Ableitungsregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:42 Di 27.10.2015 | Autor: | Wergez |
Aufgabe | Efficient Provision of Public Goods
• Assume that a social planner maximises total social welfare:
max [mm] u^{a}(Q)+x^{a}+u^{b}(Q)+x^{b}
[/mm]
[mm] q^{a}, q^{b}
[/mm]
max [mm] u^{a}(q^{a}+q^{b})+y^{a}-p*q^{a}+u^{a}(q^{a}+q^{b})+y^{b}-p*q^{b}
[/mm]
[mm] q^{a}, q^{b}
[/mm]
• First order conditions: [mm] u^{a}'(Q)-p+u^{b}'(Q)=0 [/mm] |
Hallo zusammen,
bin BWL-Student und gerade im Ausland, daher ist die Frage auf Englisch.
Ich habe die Frage in Schulmathe mal hinein gestellt, da ich mir sicher bin, dass ich mich einfach nur ziemlich dumm gerade anstelle bei der Ableitung.
Die Funktion wird abgeleitet und gleich 0 gesetzt. Im Zweiten Schritt wird Q durch den Anteil des Agenten an Q mit q ersetzt (der Sachverhalt ist hier Ökonomie des Staates, ist aber für das Problem nicht relevant) und x durch die Budgetbeschränkung des jeweiligen Agenten ersetzt.
Meine Frage ist wie hier abgeleitet wird? Offensichtlich nach [mm] q^{a} [/mm] und [mm] q^{b}, [/mm] aber wie wird das genau gemacht? Die Terme [mm] y^{a} [/mm] und [mm] y^{b} [/mm] fallen weg. Welche Regel greift bei dieser Leitung? Exponentenregel?
Ich würde mich freuen, wenn jemand mir den Zwischenschritt erklären könnte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Kann es sein, dass das Ergebnis statt [mm]u^{a’}(Q)-p+u{b’}(Q)=0[/mm]
heißen muss: [mm](u^{a}(Q))'-p+(u^{b}(Q))'=0[/mm],
und dass [mm] x^{a}+x^{b}=-pQ [/mm] ist.
Dann hätte man einfach nach Q abgleitet.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:34 Mi 28.10.2015 | Autor: | Wergez |
Ich habe die Ausgangsfrage korrigiert. Also wenn ich den zweiten Schritt nach [mm] u^{a} [/mm] ableite bleiben offensichtlich die beiden u Terme stehen und [mm] y^{a}, y^{b} [/mm] und [mm] p*q^{b} [/mm] fallen weg (werden zu 0), weil kein [mm] u^{a} [/mm] dabei steht. Bei [mm] p*q^{a} [/mm] und wird der Torfaktor q nicht abgeleitet und [mm] q^{a} [/mm] wird zu [mm] q^{0} [/mm] und damit 1? Das ist meine Frage quasi. Ich kenn ja die Exponentenregel, dass bei [mm] x^{2} [/mm] die Ableitung [mm] 2*x^{1} [/mm] heißt, aber wie sieht das bei [mm] q^{a} [/mm] aus, welches nach [mm] q^{a} [/mm] (?) geleitet wird?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:19 Mi 28.10.2015 | Autor: | fred97 |
> Efficient Provision of Public Goods
>
> • Assume that a social planner maximises total social
> welfare:
>
> max [mm]u^{a}(Q)+x^{a}+u^{b}(Q)+x^{b}[/mm]
> [mm]q^{a}, q^{b}[/mm]
>
> max
> [mm]u^{a}(q^{a}+q^{b})+y^{a}-p*q^{a}+u^{a}(q^{a}+q^{b})+y^{b}-p*q^{b}[/mm]
> [mm]q^{a}, q^{b}[/mm]
>
> • First order conditions: [mm]u^{a}'(Q)-p+u^{b}'(Q)=0[/mm]
Da ist vieles völlig unklar und verwirrend.
1. ich vermute, dass es beim zweiten max ... so lauten soll:
max $ [mm] u^{a}(q^{a}+q^{b})+y^{a}-p\cdot{}q^{a}+u^{b}(q^{a}+q^{b})+y^{b}-p\cdot{}q^{b} [/mm] $
$ [mm] q^{a}, q^{b} [/mm] $
im 4. Summanden also nicht [mm] u^a [/mm] sondern [mm] u^b.
[/mm]
2. Abkürzend setze ich [mm] f=u^a, g=u^b, s=q^q [/mm] und [mm] t=q^b.
[/mm]
Setzt man weiter
[mm] h(s,t):=f(t+s)+y^a-ps+g(s+t)+y^b-pt,
[/mm]
so ist also die Funktion h zu maximieren.
3. Du fragst, wie man auf
$ [mm] u^{a}'(Q)-p+u^{b}'(Q)=0 [/mm] $
kommt. Ich vermute, es ist (mit meinen Bezeichnungen) Q=s+t.
Wenn das so ist, dann haben wir für die partielle Ableitung von h nach s:
[mm] h_s(s,t)=f'(Q)-p+g(Q)
[/mm]
4. Fazit:
$ [mm] u^{a}'(Q)-p+u^{b}'(Q)=0 [/mm] $ [mm] \gdw h_s(s,t)=0.
[/mm]
FRED
>
>
>
>
>
>
> Hallo zusammen,
> bin BWL-Student und gerade im Ausland, daher ist die Frage
> auf Englisch.
> Ich habe die Frage in Schulmathe mal hinein gestellt, da
> ich mir sicher bin, dass ich mich einfach nur ziemlich dumm
> gerade anstelle bei der Ableitung.
>
> Die Funktion wird abgeleitet und gleich 0 gesetzt. Im
> Zweiten Schritt wird Q durch den Anteil des Agenten an Q
> mit q ersetzt (der Sachverhalt ist hier Ökonomie des
> Staates, ist aber für das Problem nicht relevant) und x
> durch die Budgetbeschränkung des jeweiligen Agenten
> ersetzt.
> Meine Frage ist wie hier abgeleitet wird? Offensichtlich
> nach [mm]q^{a}[/mm] und [mm]q^{b},[/mm] aber wie wird das genau gemacht? Die
> Terme [mm]y^{a}[/mm] und [mm]y^{b}[/mm] fallen weg. Welche Regel greift bei
> dieser Leitung? Exponentenregel?
>
> Ich würde mich freuen, wenn jemand mir den Zwischenschritt
> erklären könnte.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
|
|
|
|