www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungsregel
Ableitungsregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:03 Sa 07.10.2006
Autor: allida

Aufgabe
.

guten abend an alle

ich habe fragen zur folgender aufgabe:

ich soll mit der quotientenregel beweisen, also zeigen, dass für
[mm] h=\bruch{1}{g} [/mm] folgendes gilt:

1)

h'(x) = - [mm] \bruch{g'}{g^{2}}, [/mm] dies soll die sogenannte rezipokregel darstellen.

2)

h''(x)= -  [mm] \bruch{2(h')²-h*h''}{h³} [/mm]


also, ich habe mich natürlich bezüglich dieser regel schon bisschen informieren können. aber icvh habe leider nur beweise mit der kettenregel gefunden.

kann mir deshalb bitte bei dieser aufgabe weiterhelfen???

denn ich weiss zudem noch, dass ich in meinem ergebnis auch alle voraussetzungen , die für h erfüllt werden müssen, zu schreiben habe.
auch bei den voraussetzungen komme ich leider nicht weiter.

ich hoffe, dass diese ableitngsregel eine leichte ist, und ich sie bis jetzt nur nicht gehabt habe.
hoffe ich verstehe das.


ich danke euch im voraus.

lg allida



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitungsregel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 Sa 07.10.2006
Autor: M.Rex

Hallo und [willkommenmr]
.

>  guten abend an alle
>  
> ich habe fragen zur folgender aufgabe:
>  
> ich soll mit der quotientenregel beweisen, also zeigen,
> dass für
> [mm]h=\bruch{1}{g}[/mm] folgendes gilt:
>  
> 1)
>  
> h'(x) = - [mm]\bruch{g'}{g^{2}},[/mm] dies soll die sogenannte
> rezipokregel darstellen.

Nun, damit das gelten kann, muss g(x) erst einmal differenzierbar sein und es muss gelten [mm] g'(x)\not=0 [/mm]

Dann kann ich [mm] h(x)=\bruch{\overbrace{1}^{=u}}{\underbrace{g(x)}_{=v}} [/mm] bilden und auch ableiten.

Mit Hilfe der Quotientenregel ergibt sich

[mm] h'(x)=\bruch{u'v-v'u}{v²}=\bruch{0*g(x)-g'(x)*1}{g(x)²} [/mm]

Jetzt noch ein wenig vereinfachen und Fertig.


>  
> 2)
>  
> h''(x)= -  [mm]\bruch{2(h')²-h*h''}{h³}[/mm]

Es gilt ja, wie schongezeigt

[mm] h'(x)=-\bruch{g'(x)}{g(x)²} [/mm]

Und duweisst, dass die Zweite Ableitung der Originalfunktion  die erste Ableitung der Ableitung ist.

Jetzt wissen wir, dass man wieder die Quotientenregel anwenden kann
Also [mm] h''(x)=(-\bruch{g'(x)}{g(x)²})'=-\bruch{g''(x)*(g(x))²-2g(x)*g'(x)*g'(x)}{(g(x)²)²} [/mm]
(Die Ableitung von g(x)²ist [mm] \underbrace{2*g(x)}_{aeussere Abl.}*\underbrace{g'(x)}_{innere Abl.} [/mm] (Kettenregel)
und vereinfachen und Kürzen führt zu
[mm] -\bruch{g''(x)*(g(x))²-2g(x)*g'(x)g'(x)}{(g(x)²)²}=-\bruch{g''(x)*g(x)-2g'(x)*g'(x)}{g(x)³}=\bruch{-(g''(x)g(x)-2(g'(x)²))}{g(x)³}=\bruch{-g''(x)g(x)+2(g'(x)²)}{g(x)³}=\bruch{2(g'(x)²)-g''(x)g(x))}{g(x)³} [/mm]

>
> also, ich habe mich natürlich bezüglich dieser regel schon
> bisschen informieren können. aber icvh habe leider nur
> beweise mit der kettenregel gefunden.
>  
> kann mir deshalb bitte bei dieser aufgabe weiterhelfen???
>  
> denn ich weiss zudem noch, dass ich in meinem ergebnis auch
> alle voraussetzungen , die für h erfüllt werden müssen, zu
> schreiben habe.
> auch bei den voraussetzungen komme ich leider nicht
> weiter.
>  
> ich hoffe, dass diese ableitngsregel eine leichte ist, und
> ich sie bis jetzt nur nicht gehabt habe.
>  hoffe ich verstehe das.
>  
>
> ich danke euch im voraus.
>  
> lg allida

Hilft dir das weiter?

Marius

Bezug
        
Bezug
Ableitungsregel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:48 Sa 07.10.2006
Autor: ullim

Hi allida,

ich denke Du kannst das am Besten mit der Quotientenregel berechen.

Also [mm] (\bruch{u}{v})'=\bruch{u'*v-v'u}{v^2} [/mm]

mit u=1 und v=g folgt

[mm] h'=\bruch{0*g-g'1}{g^2}=\bruch{-g'}{g^2} [/mm]


Aufgabe 2 geht analog

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de