www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitungsregeln
Ableitungsregeln < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsregeln: Frage
Status: (Frage) beantwortet Status 
Datum: 18:12 Sa 26.03.2005
Autor: AzraHB

Hallo,

habe eine Frage: ich muss die folgende Funktion mit Hilfe von:

a) Summenregel
b) Produktregel
c) Quotientenregel
d) kettenregel

ableiten.

f(x) = x² + 6x + 9

Also: wie gesagt, laut dem Prof. könnte man die Funktion mit Hilfer der Ableitungsregeln a-d ableiten.

Ich kann die Regeln Summen- und Produktregel anwenden,

a) 2x + 6

b) (x+3) ² = 2 (x+3) * 1 =  2x+6

.........



aber die anderen beiden nicht mehr. Hat da jemand eine Idee????

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
www.matheboard.de

        
Bezug
Ableitungsregeln: Welche anderen beiden ??
Status: (Antwort) fertig Status 
Datum: 18:35 Sa 26.03.2005
Autor: Loddar

Hallo AzraHB!


[willkommenmr]


> f(x) = x² + 6x + 9
>  
> a) 2x + 6

Ist das die Ableitung zu f(x) ? Dann ist alles richtig! [ok]




> b) (x+3) ² = 2 (x+3) * 1 =  2x+6

Achtung beachten: Zunächst wendest Du hier die MBKettenregel an (nicht die MBProduktregel, ginge aber auch!).

Und bitte sauberer aufschreiben:
$f(x) \ = \ [mm] (x+3)^2$ [/mm]

$f'(x) \ = \ 2x+3$


> aber die anderen beiden nicht mehr. Hat da jemand eine
> Idee????

[haee] Welche anderen beiden denn? [verwirrt]


Gruß
Loddar


Bezug
                
Bezug
Ableitungsregeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 Sa 26.03.2005
Autor: AzraHB

HI Loddar,

ich weiß nicht wie ich die Funktion so umformen kann, damit ich den Quotienten und Kattenregel anwenden kann.

Hättest du da eine Idee für mich?

Bezug
                        
Bezug
Ableitungsregeln: ? ? ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Sa 26.03.2005
Autor: Loddar

Von welcher Funktion reden wir denn jetzt?


Diese hier: $f(x) \ = \ [mm] x^2 [/mm] - 6x + 9$  ??

Warum sollte diese vorher umgeformt werden (was man z.B. über binomische Formel könnte)?

Die Ableitung bildest Du hier über die summenweise (= Summenregel) mit der MBPotenzregel ...


Loddar


Bezug
                                
Bezug
Ableitungsregeln: Frage
Status: (Frage) beantwortet Status 
Datum: 16:15 So 27.03.2005
Autor: AzraHB

Also, dann versuche ich es mal auf diese Weise meine frage loszuwerden.

Die Funktion lautet:

f (x) = [mm] x^2 [/mm] - 6x +9

Lösung:

Summenregel: f' (x) = 2x - 6

Produktregel: f' (x) = [mm] \left( x-3\right)^2 [/mm]

Quotientenregel: f' (x)=  [mm] \bruch{1}{(x-3)^-2} [/mm]

Kettenregel: weiß nicht? (???)

Kannst du mir bitte sagen, ob ich die Ableitungen richtig gemacht habe? und wie man aus der Funktion die Kettenregel bilden kann?





Bezug
                                        
Bezug
Ableitungsregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 So 27.03.2005
Autor: Zwerglein

Hi, AzraHB,

> Die Funktion lautet:
>  
> f (x) = [mm]x^2[/mm] - 6x +9
>  
> Lösung:
>  
> Summenregel: f' (x) = 2x - 6
>  
> Produktregel: f' (x) = [mm]\left( x-3\right)^2[/mm]

Das ist nicht f'(x), sondern noch f(x).
Für die Anwendung der Produktregel (PR) musst Du das aber auch als PRODUKT schreiben:
f(x)=(x-3)*(x-3)
PR: f'(x) = 1*(x-3) + (x-3)*1 = x-3 + x-3 = 2x-6

Für die Anwendung der Kettenregel kannst Du's so wie oben stehen lassen:
f(x) = [mm] (x-3)^{2} [/mm]
f'(x) = [mm] 2*(x-3)^{1}*1 [/mm] = 2(x-3) = 2x-6

>  
> Quotientenregel: f' (x)=  [mm]\bruch{1}{(x-3)^-2}[/mm]

Ob das so gemeint ist, glaub' ich fast nicht!

Ich würd' einfach f(x) = [mm] \bruch{x^{2}-6x+9}{1} [/mm] schreiben und dann mit QR ableiten:
f'(x) =  [mm] \bruch{(2x-6)*1 - (x^{2}-6x+9)*0}{1^{2}} [/mm]
= [mm] \bruch{(2x-6)}{1^{2}} [/mm] = 2x-6


Bezug
                                                
Bezug
Ableitungsregeln: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Mo 28.03.2005
Autor: AzraHB

Danke zwerglein :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de