www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Abrundungsfunktion
Abrundungsfunktion < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abrundungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mo 21.01.2013
Autor: DudiPupan

Aufgabe
Zu zeigen:
[mm] $b<(\lfloor \sqrt{b}\rfloor+1)^2-1$ [/mm]
Wobei [mm] $b\in\mathbb{N}$ [/mm] keine Quadratzahl ist.

Guten Abend zusammen,
ich muss diese Ungleichung für einen Beweis per Schubfachprinzip zeigen, jedoch komme ich einfach nicht weiter.
Ich weiß ja, dass gilt: [mm] $\sqrt{b}<(\lfloor \sqrt{b}\rfloor+1)$,bzw. $b<(\lfloor \sqrt{b}\rfloor+1)^2$. [/mm]
Jedoch stört mich das $-1$ am Ende und ich komme einfach nicht weiter.
Würde mich sehr über Tipps freuen.

Vielen Dank
Liebe Grüße
Dudi

        
Bezug
Abrundungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mo 21.01.2013
Autor: reverend

Hallo Lucas,

vielleicht verstehe ich den Sinn der Aufgabe ja nicht, oder ich sehe das Problem einfach nicht...

> Zu zeigen:
>  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]

Nur um sicherzugehen: [mm] \lfloor{x}\rfloor [/mm] bezeichnet die untere Gaußklammer, ja?

>  Wobei [mm]b\in\mathbb{N}[/mm]
> keine Quadratzahl ist.

Das scheint keine nötige Einschränkung zu sein.

>  Guten Abend zusammen,
>  ich muss diese Ungleichung für einen Beweis per
> Schubfachprinzip zeigen,

Ich kenne das Schubfachprinzip, aber wie es sich hierher verirren konnte, ist mir rätselhaft.

> jedoch komme ich einfach nicht
> weiter.
>  Ich weiß ja, dass gilt: [mm]\sqrt{b}<(\lfloor \sqrt{b}\rfloor+1)[/mm],bzw.
> [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2[/mm].
>  Jedoch stört mich das [mm]-1[/mm]
> am Ende und ich komme einfach nicht weiter.

Untersuche alle [mm] b=a^2-1 [/mm] mit [mm] a\in\IN. [/mm] Schlimmer kanns ja nicht kommen. :-)
Dann musst Du natürlich noch zeigen, warum damit alle [mm] b\in\IN [/mm] erledigt sind.

>  Würde mich sehr über Tipps freuen.

Grüße
reverend


Bezug
                
Bezug
Abrundungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Mo 21.01.2013
Autor: DudiPupan

Hallo,

vielen Dank für die Antwort.

> Hallo,
>  
> > Zu zeigen:
>  >  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]
>  >  Wobei
> [mm]b\in\mathbb{N}[/mm]
> > keine Quadratzahl ist.
>  >  Guten Abend zusammen,
>  >  ich muss diese Ungleichung für einen Beweis per
> > Schubfachprinzip zeigen, jedoch komme ich einfach nicht
> > weiter.
>  >  Ich weiß ja, dass gilt: [mm]\sqrt{b}<(\lfloor \sqrt{b}\rfloor+1)[/mm],bzw.
> > [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2[/mm].
>  >  Jedoch stört mich
> das [mm]-1[/mm]
> > am Ende und ich komme einfach nicht weiter.
>  >  Würde mich sehr über Tipps freuen.
>  
> ich weiß auch nicht, was das mit dem Schubfachprinzip zu
> tun hat.

Es geht um Paare [mm] $(x,y)\in\{0,1,\ldots,\lfloor b \rfloor\}, ((x,y)\neq [/mm] (0,0)$
Nun brauche ich, dass es mehr Paare $(x,y)$ als Restklassen modulo b gibt.
>Aber Du

>  kannst o.E. sagen, dass
>  [mm]b=\lfloor b \rfloor +e[/mm]
>  mit einem [mm]0 \le e=e_b < 1\,.[/mm]
>  

Das habe ich schon versucht.
Ich komme auf:
[mm] $(\lfloor \sqrt{b}\rfloor+1)^2-1=(\sqrt{b}+1-x)^2-1=b+2\sqrt{b}(1-x)+(1-x)^2-1$. [/mm]
Jedoch sehe ich hier auch nicht, wie ich auf kleiner b komme.

> Einsetzen und (mit Äquivalenzumformungen) "lorechnen"!
>  
> P.S. Öhm... wenn [mm]b \in \IN\,,[/mm] dann ist sogar stets
> [mm]e=e_b=0\,[/mm]; stimmt
> die Aufgabenstellung? Ich meine, dann reduziert sich wegen
> [mm]b=\lfloor b\rfloor[/mm] auf
>  [mm]b < (b+1)^2-1\,.[/mm]
>  Das ist ja schon trivial...

Es soll doch gelten: [mm] $b<(\lfloor {\bf{\sqrt{b}}}\rfloor+1)^2-1$. [/mm]

Vielen Dank

Liebe Grüße
Dudi

>  
> Gruß,
>    Marcel

Bezug
                        
Bezug
Abrundungsfunktion: Erneut korrigiert!
Status: (Antwort) fertig Status 
Datum: 22:29 Mo 21.01.2013
Autor: Marcel

Hallo Dudi,

edit: korrigiert!

wenn Du so rechnest, wie ich es

    hier (klick!)

vorgeschlagen habe, reduziert sich Behauptung auf die offensichtlich
kommt man zur "wahren" Ungleichung
$$0 [mm] \le \xi \red{\;\le\;} \frac{2*\lfloor \sqrt{b} \rfloor}{2*\lfloor \sqrt{b} \rfloor+\red{\xi}}\,.$$ [/mm]

P.S. Okay, vielleicht sollte man sowas wie [mm] $\xi$ [/mm] anstatt [mm] $e\,$ [/mm] wählen. Das
war 'n blöder Variablenname - daher geändert!

Gruß,
  Marcel

Bezug
                                
Bezug
Abrundungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Mo 21.01.2013
Autor: DudiPupan

Hallo Marcel,

vielen vielen Dank für deine Antwort.

So müsste es funktionieren.

Vielen Dank und einen schönen Abend

Liebe Grüße
Dudi

Bezug
                                
Bezug
Abrundungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:07 Di 22.01.2013
Autor: DudiPupan


> Hallo Dudi,
>  
> edit: korrigiert!
>  
> wenn Du so rechnest, wie ich es
>
> hier (klick!)
>  
> vorgeschlagen habe, reduziert sich Behauptung auf die
> offensichtlich wahre
>  Ungleichung
>  [mm]0 \le \xi < \frac{2*\lfloor \sqrt{b} \rfloor}{2*\lfloor \sqrt{b} \rfloor+\red{\xi}}\,.[/mm]

Hallo nochmal,

ich stehe gerade irgendwie auf dem Schlauch.
Ich sehe nicht, warum diese Ungleichung offensichtlich gilt.
Kann ich das noch irgendwie zeigen oder weiter vereinfachen?

Vielen Dank
Liebe Grüße
Dudi

>  
> P.S. Okay, vielleicht sollte man sowas wie [mm]\xi[/mm] anstatt [mm]e\,[/mm]
> wählen. Das
>  war 'n blöder Variablenname - daher geändert!
>  
> Gruß,
>    Marcel


Bezug
                                        
Bezug
Abrundungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Di 22.01.2013
Autor: Marcel

Hallo,

> > Hallo Dudi,
>  >  
> > edit: korrigiert!
>  >  
> > wenn Du so rechnest, wie ich es
> >
> > hier (klick!)
>  >  
> > vorgeschlagen habe, reduziert sich Behauptung auf die
> > offensichtlich wahre
>  >  Ungleichung
>  >  [mm]0 \le \xi < \frac{2*\lfloor \sqrt{b} \rfloor}{2*\lfloor \sqrt{b} \rfloor+\red{\xi}}\,.[/mm]
>  
> Hallo nochmal,
>  
> ich stehe gerade irgendwie auf dem Schlauch.
>  Ich sehe nicht, warum diese Ungleichung offensichtlich
> gilt.
>  Kann ich das noch irgendwie zeigen oder weiter
> vereinfachen?

reverend hat Recht - ich hatte da auch logisch "falsch herum" gedacht.
Wenn ich das richtig sehe:
Sei $a [mm] \in \IN$ [/mm] und wir betrachten alle natürlichen [mm] $b\,$ [/mm] mit [mm] $a^2 \le [/mm] b < [mm] (a+1)^2\,.$ [/mm]
Dann reicht es doch, die zu beweisende Ungleichung für [mm] $b=(a+1)^2-1$ [/mm] zu beweisen,
um herauszufinden, dass sie auch für alle [mm] $a^2 \le [/mm] b < [mm] (a+1)^2$ [/mm] gilt, denn
[mm] $(a+1)^2-1$ [/mm] ist "die größte natürlich Zahl im Intervall [mm] $[a^2,(a+1)^2)$", [/mm] und
natürlich gilt für alle natürlichen [mm] $b\,$ [/mm] mit [mm] $a^2 \le [/mm] b < [mm] (a+1)^2$ [/mm] doch [mm] $\lfloor \sqrt{b} \rfloor=a\,.$ [/mm]
Deswegen der Hinweis von reverend: Im Prinzip benutzt er nur, dass [mm] $\sqrt{\cdot}\,$ [/mm] (streng)
monoton wachsend ist! Was mich gerade irritiert, ist, dass meine
Ungleichung oben nicht äquivalent zur Behauptung ist - auch, wenn diese
Ungleichung von oben vielleicht doch eher nicht ganz offensichtlich wahr ist.
Das rechne ich aber nachher nochmal nach!

Edit: Deine Ungleichung stimmt so genau dann, wenn [mm] $b+1\,$ [/mm] keine
Quadratzahl ist [mm] $\blue{\text{und zudem }} [/mm] b [mm] \not=1$ [/mm] - denn $b [mm] \in \IN \setminus \{1\}$ [/mm] darf durchaus eine Quadratzahl sein.Denn das
entnimmst Du sofort obigen Überlegungen:
Wenn [mm] $a^2 \le [/mm] b < [mm] (a+1)^2-1\,,$ [/mm] dann ist halt insbesondere $b < [mm] (a+1)^2-1\,.$ [/mm] Und hier
ist ja [mm] $\lfloor \sqrt{b} \rfloor=a\,.$
[/mm]

Gruß,
  Marcel

Bezug
                                
Bezug
Abrundungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:29 Di 22.01.2013
Autor: reverend

Hallo Marcel,

> wenn Du so rechnest, wie ich es
>
> hier (klick!)
>  
> vorgeschlagen habe, reduziert sich Behauptung auf die
> offensichtlich wahre
>  Ungleichung
>  [mm]0 \le \xi < \frac{2*\lfloor \sqrt{b} \rfloor}{2*\lfloor \sqrt{b} \rfloor+\red{\xi}}\,.[/mm]

Für [mm] b=a^2+2a=(a+1)^2-1, a\in\IN [/mm] ist die Ungleichung nicht wahr. Dazu müsste man noch das rechte Relationszeichen in ein [mm] $\le$ [/mm] umwandeln. Dann passts.

Das ist im übrigen der Grund, warum ich die Untersuchung gerade solcher Zahlen vorgeschlagen hatte. ;-)

Grüße
reverend


Bezug
                                        
Bezug
Abrundungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Di 22.01.2013
Autor: Marcel

Hallo reverend,

> Hallo Marcel,
>  
> > wenn Du so rechnest, wie ich es
> >
> > hier (klick!)
>  >  
> > vorgeschlagen habe, reduziert sich Behauptung auf die
> > offensichtlich wahre
>  >  Ungleichung
>  >  [mm]0 \le \xi < \frac{2*\lfloor \sqrt{b} \rfloor}{2*\lfloor \sqrt{b} \rfloor+\red{\xi}}\,.[/mm]
>  
> Für [mm]b=a^2+2a=(a+1)^2-1, a\in\IN[/mm] ist die Ungleichung nicht
> wahr. Dazu müsste man noch das rechte Relationszeichen in
> ein [mm]\le[/mm] umwandeln. Dann passts.

okay, mir ist nicht klar, warum das nicht der Fall sein sollte - denn der
Nenner rechterhand ist stets [mm] $\le 1\,.$ [/mm] Ich teste das jetzt mal:
Sei [mm] $a=2\,,$ [/mm] dann ist [mm] $b=(a+1)^2-1=8\,.$ [/mm] Ferner ist [mm] $\lfloor [/mm] b [mm] \rfloor=2\,.$ [/mm]
Es folgt
[mm] $$\xi=\sqrt{8}-2=0.8284\ldots \in [0,1)\,.$$ [/mm]
Okay, ich seh's: Rechterhand gehört tatächlich ein [mm] $\le\,$ [/mm] hin. Ich hatte
"falsch herum" gefolgert...

Danke, ich ändere das!
  

> Das ist im übrigen der Grund, warum ich die Untersuchung
> gerade solcher Zahlen vorgeschlagen hatte. ;-)

Okay - das war mir aber nicht so ganz klar. :-) (Ich wollte eine rechnerische
Alternative vorschlagen!)

Gruß,
  Marcel

Bezug
        
Bezug
Abrundungsfunktion: Variablenname angepasst!
Status: (Antwort) fertig Status 
Datum: 22:24 Mo 21.01.2013
Autor: Marcel

Hallo,

> Zu zeigen:
>  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]
>  Wobei [mm]b\in\mathbb{N}[/mm]
> keine Quadratzahl ist.
>  Guten Abend zusammen,
>  ich muss diese Ungleichung für einen Beweis per
> Schubfachprinzip zeigen, jedoch komme ich einfach nicht
> weiter.
>  Ich weiß ja, dass gilt: [mm]\sqrt{b}<(\lfloor \sqrt{b}\rfloor+1)[/mm],bzw.
> [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2[/mm].
>  Jedoch stört mich das [mm]-1[/mm]
> am Ende und ich komme einfach nicht weiter.
>  Würde mich sehr über Tipps freuen.

ich weiß auch nicht, was das ganze mit dem Schubfachprinzip zu tun hat.
Man kann es vielleicht so angehen: Man schreibt
[mm] $$\sqrt{b}=\lfloor \sqrt{b}\rfloor +\red{\xi}$$ [/mm]
mit einem $0 [mm] \le \red{\xi}=\red{\xi_b} [/mm] < [mm] 1\,,$ [/mm] daraus folgt
[mm] $$b={\sqrt{b}\,}^2=(\lfloor \sqrt{b}\rfloor +\red{\xi})^2=\ldots...$$ [/mm]

Gruß,
  Marcel

Bezug
        
Bezug
Abrundungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:35 Di 22.01.2013
Autor: felixf

Moin!

> Zu zeigen:
>  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]
>  Wobei [mm]b\in\mathbb{N}[/mm]
> keine Quadratzahl ist.

Mal eine Frage, warum macht ihr das alle so kompliziert? ;-)

Es gilt doch [mm] $n^2 [/mm] + (2n+1) = [mm] (n+1)^2$. [/mm] Deswegen kann man $b$ schreiben als $b = [mm] \hat{b}^2 [/mm] + k$ mit [mm] $\hat{b} [/mm] = [mm] \lfloor\sqrt{b}\rfloor$ [/mm] und $0 [mm] \le [/mm] k [mm] \le [/mm] 2 [mm] \hat{b}$. [/mm]

Damit erhaelt man sofort [mm] $(\lfloor\sqrt{b}\rfloor [/mm] + [mm] 1)^2 [/mm] - 1 = [mm] (\hat{b} [/mm] + [mm] 1)^2 [/mm] - 1 = [mm] \hat{b}^2 [/mm] + 2 [mm] \hat{b}$. [/mm] Da $k [mm] \le [/mm] 2 [mm] \hat{b}$ [/mm] ist folgt also sofort $b [mm] \le (\lfloor\sqrt{b}\rfloor [/mm] + [mm] 1)^2 [/mm] - 1$, und man sieht auch sofort, in welchem Fall man Gleichheit hat: und zwar wenn $k = 2 [mm] \hat{b}$ [/mm] ist, also $b = [mm] (\hat{b} [/mm] + [mm] 1)^2 [/mm] - 1$ ist, also eins kleiner als die naechste Quadratzahl. (Das sind genau die Zahlen, die Reverend vorgeschlagen hat zu untersuchen.) Insbesondere gilt die strikte Ungleichung auch fuer Quadratzahlen, allerdings nicht fuer Zahlen die eins kleiner sind.

LG Felix


Bezug
                
Bezug
Abrundungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:03 Di 22.01.2013
Autor: Marcel

Hallo Felix,

> Moin!
>  
> > Zu zeigen:
>  >  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]
>  >  Wobei
> [mm]b\in\mathbb{N}[/mm]
> > keine Quadratzahl ist.
>  
> Mal eine Frage, warum macht ihr das alle so kompliziert?
> ;-)

kompliziert ist Ansichtssache. ;-)

> Es gilt doch [mm]n^2 + (2n+1) = (n+1)^2[/mm]. Deswegen kann man [mm]b[/mm]
> schreiben als [mm]b = \hat{b}^2 + k[/mm] mit [mm]\hat{b} = \lfloor\sqrt{b}\rfloor[/mm]
> und [mm]0 \le k \le 2 \hat{b}[/mm].
>  
> Damit erhaelt man sofort [mm](\lfloor\sqrt{b}\rfloor + 1)^2 - 1 = (\hat{b} + 1)^2 - 1 = \hat{b}^2 + 2 \hat{b}[/mm].
> Da [mm]k \le 2 \hat{b}[/mm] ist folgt also sofort [mm]b \le (\lfloor\sqrt{b}\rfloor + 1)^2 - 1[/mm],
> und man sieht auch sofort, in welchem Fall man Gleichheit
> hat: und zwar wenn [mm]k = 2 \hat{b}[/mm] ist, also [mm]b = (\hat{b} + 1)^2 - 1[/mm]
> ist, also eins kleiner als die naechste Quadratzahl. (Das
> sind genau die Zahlen, die Reverend vorgeschlagen hat zu
> untersuchen.) Insbesondere gilt die strikte Ungleichung
> auch fuer Quadratzahlen, allerdings nicht fuer Zahlen die
> eins kleiner sind.

Ja, denn das war das irritierende: Es gilt doch etwa
$$8 [mm] \le (2+1)^2-1\,,$$ [/mm]
weil [mm] $8=8\,,$ [/mm] aber
$$8 < [mm] (2+1)^2-1=8$$ [/mm]
ist Unsinn. Das war mir gestern auch nicht aufgefallen...

Gruß,
  Marcel

Bezug
                
Bezug
Abrundungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Di 22.01.2013
Autor: Marcel

Hallo Felix,

> Moin!
>  
> > Zu zeigen:
>  >  [mm]b<(\lfloor \sqrt{b}\rfloor+1)^2-1[/mm]
>  >  Wobei
> [mm]b\in\mathbb{N}[/mm]
> > keine Quadratzahl ist.
>  
> Mal eine Frage, warum macht ihr das alle so kompliziert?
> ;-)
>  
> Es gilt doch [mm]n^2 + (2n+1) = (n+1)^2[/mm]. Deswegen kann man [mm]b[/mm]
> schreiben als [mm]b = \hat{b}^2 + k[/mm] mit [mm]\hat{b} = \lfloor\sqrt{b}\rfloor[/mm]
> und [mm]0 \le k \le 2 \hat{b}[/mm].
>  
> Damit erhaelt man sofort [mm](\lfloor\sqrt{b}\rfloor + 1)^2 - 1 = (\hat{b} + 1)^2 - 1 = \hat{b}^2 + 2 \hat{b}[/mm].
> Da [mm]k \le 2 \hat{b}[/mm] ist folgt also sofort [mm]b \le (\lfloor\sqrt{b}\rfloor + 1)^2 - 1[/mm],
> und man sieht auch sofort, in welchem Fall man Gleichheit
> hat: und zwar wenn [mm]k = 2 \hat{b}[/mm] ist, also [mm]b = (\hat{b} + 1)^2 - 1[/mm]
> ist, also eins kleiner als die naechste Quadratzahl. (Das
> sind genau die Zahlen, die Reverend vorgeschlagen hat zu
> untersuchen.) Insbesondere gilt die strikte Ungleichung
> auch fuer Quadratzahlen, allerdings nicht fuer Zahlen die
> eins kleiner sind.

ich hab' mir das nun so überlegt:
Für $b [mm] \in \IN$ [/mm] mit [mm] $\red{b\;>\;1}$ [/mm] gibt's (genau) ein $a [mm] \in \IN$ [/mm] mit
[mm] $$a^2 \le [/mm] b < [mm] (a+1)^2\,,$$ [/mm]
nämlich [mm] $a:=\lfloor \sqrt{b} \rfloor\,.$ [/mm]

Mit [mm] $a:=\lfloor \sqrt{b} \rfloor$ [/mm] folgt die zu beweisende Ungleichung
wegen
$$b < [mm] (a+1)^2-1=(\lfloor \sqrt{b} \rfloor+1)^2-1\,,$$ [/mm]
sofern denn $b [mm] \not=1$ [/mm] und [mm] $b+1\,$ [/mm] keine Quadratzahl ist. [mm] $\text{(}$Denn [/mm] wenn
[mm] $b+1\,$ [/mm] keine Quadratzahl ist, so gilt ja
$$b [mm] \le (a+1)^2-2=(\lfloor \sqrt{b}\rfloor +1)^2-2\,. \text{)}$$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de