Abschätzung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Ziel: Nachweis, dass eine gegebene Zahl [mm] \omega [/mm] irrational ist
Weg (in 6 Schritten):
1) Nehme an, [mm] \omega [/mm] sei nicht irrational
2) Konstruiere eine ganze Hilfszahl bzw. eine Folge von Hilfszahlen N
3) Zeige, dass N von 0 verschieden ist
4) Zeige, dass N nicht zu groß ist (genauer, dass |N|<1)
5) Wende den Fundamentalsatz an
6) Beende den Beweis
Aufgabe | Zeigen Sie, dass keine ganzzahlige Linearkombination von e und [mm] e^{-1} [/mm] rational ist.
1. Annahme: Es gibt eine nicht-triviale Linearkombination mit [mm] $q_1e+q_2e^{-1}=0$, [/mm] wobei [mm] $q_1$ [/mm] und [mm] $q_2$ [/mm] ganzzahlig und nicht beide 0 seien. O.B.d.A. k"onnen wir sogar annehmen, dass [mm] $q_1e+q_2e^{-1}$ [/mm] eine ganze Zahl ist.
[mm] q_1e+q_2e^{-1}=q_1\sum_{j=0}^\infty\bruch{1}{j!} +q_2\sum_{j=0}^\infty\bruch{(-1)^j}{j!} [/mm]
2. wir konstruieren unsere Hilfszahlen:
Eine geeignete Umformung ergibt f"ur [mm] e^{-1}=\frac{1}{\sum_{j=0}^\infty\frac{1}{j!}}=\sum_{j=0}^\infty \frac{(-1)^j}{j!}.
[/mm]
[mm] (\rightarrow [/mm] das hat unser Professor uns nicht näher erläutert)
[mm] R_n=q_1e+q_2e^{-1}-q_1\sum_{j=0}^n\bruch{1}{j!} -q_2\sum_{j=0}^n\bruch{(-1)^j}{j!}
[/mm]
[mm] =q_1\sum_{j=n+1}^\infty\bruch{1}{j!} +q_2\sum_{j=n+1}^\infty\bruch{(-1)^j}{j!}\right
[/mm]
Um die Hilfszahlen ganzzahlig zu machen, werden sie mit einem geeigneten Hauptnenner multipliziert.
[mm] A_n=n!*R_n
[/mm]
Nun ist [mm] n!\sum_{j=0}n \frac{(\pm 1)^j}{j!} [/mm] stets eine ganze Zahl und wegen [mm] n!(q_1e+q_2e^{-1}) \in [/mm] Z damit auch [mm] A_n.
[/mm]
3. Zeige, dass [mm] A_n [/mm] von 0 verschieden ist.
a) Untersuche, wie die Hilfszahlen auseinander hervorgehen.
[mm] \frac{A_n}{n!}=q_1\sum _{j=n+1}^\infty\frac{1}{j!}+q_2\sum _{j=n+1}^\infty\frac{(-1)^j}{j!} [/mm] L"auft bei $n+1$ los
[mm] =q_1\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3!}\right)+...+q_2\left(\frac{(-1)^{(n+1)}}{(n+1)!}+\frac{(-1)^{(n+2)}}{(n+2)!}+\frac{(-1)^{(n+3)}}{(n+3)!}+...\right)
[/mm]
[mm] \frac{A_{n+1}}{(n+1)!}&=q_1\sum _{j=n+2}^\infty\frac{1}{j!}+q_2\sum _{j=n+2}^\infty\frac{(-1)^j}{j!}L"auft [/mm] bei $n+2$ los
[mm] =q_1\left(\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\frac{1}{(n+4!}\right)+...+q_2\left(\frac{(-1)^{(n+2)}}{(n+2)!}+\frac{(-1)^{(n+3)}}{(n+3)!}+\frac{(-1)^{(n+4)}}{(n+4)!}+...\right)
[/mm]
[mm] A_n [/mm] hat also mehr Summanden [mm] alsA_{n+1}.
[/mm]
[mm] \frac{A_n}{n!}-\frac{A_{n+1}}{(n+1)!}=q_1\left(\frac{1}{(n+1)!}\right)+q_2\left(\frac{(-1)^{(n+1)}}{(n+1)!}\right)
[/mm]
b) Schaffe den Nenner ab:
[mm] \frac{A_n\cdot (n+1)!}{n!}-\frac{A_{n+1}\cdot (n+1)!}{(n+1)!}&=\left(\frac{q_1\cdot (n+1)!}{(n+1)!}\right)+\left(\frac{q_2\cdot (n+1)!\cdot(-1)^{(n+1)}}{(n+1)!}\right)
[/mm]
[mm] A_n\cdot (n+1)+A_{n+1}&=q_1+q_2\cdot(-1)^{(n+1)}
[/mm]
Wäre nun für ein bestimmtes natürliches $n$ alle drei Zahlen [mm] A_n, A_{n+1}$ [/mm] und [mm] $A_{n+2} [/mm] gleich 0, so könnten wir daraus [mm] q_1+q_2=0 [/mm] und
[mm] q_1-q_2=0 [/mm] folgern. Dies aber ist gleichbedeutend mit [mm] q_1=q_2=0 [/mm] und daher unmöglich.
4. Nun gilt es die Hilfszahlen nach oben abzuschätzen mit Hilfe der Abschätzung
[mm] 1\le {j\choose (n+1)}=\frac{j!}{(n+1)!(j-n-1)!} [/mm] bzw.
[mm] \frac{(n+1)!}{j!}\le \frac{1}{(j-n-1)!} [/mm]
[mm] |A_n|=\left|n!\left(q_1\sum_{j=n+1}^\infty\bruch{1}{j!} -q_2\sum_{j=n+1}^\infty\bruch{(-1)^j}{j!}\right)\right|\le\left(|q_1|\sum_{j=n+1}^\infty\bruch{1}{j!} -|q_2|\sum_{j=n+1}^\infty\bruch{(-1)^j}{j!}\right)\le (|q_1|+|q_2|)\frac{e}{n+1}
[/mm]
Diese Abschätzung hier verstehe ich einfach nicht.
Wir haben also [mm] |A_n|\le \frac{(|q_1|+|q_2|)e}{n+1}<1
[/mm]
für alle genügend großen natürlichen Zahlen n.
5) Aus den Teilen 2,3 und 4 folgern wir nun, dass für unendlich viele natürliche Zahlen n die Hilfszahlen [mm] A_n [/mm] ganzzahlig sind und die Bedingung
[mm] 0<|A_n|<1 [/mm]
erfüllen. Das aber ist unmöglich.
6.) Wenn wir in 5 etwas unmögliches gezeigt haben, kann dies nur daran liegen, dass unsere Annahme aus 1. falsch sein muss. Also gilt
Sind [mm] q_1 [/mm] und [mm] q_2 [/mm] rationale Zahlen, die nicht beide gleich 0 sind so ist [mm] q_1e+q_2e^{-1} [/mm] irrational. |
Unser Professor hat in seinem Script den obigen Beweis so durchgeführt, wobei ich ab dem Schritt 4 etwas hänge. Zum
einen verstehe ich diese Abschätzung einfach nicht.
Ich habe mal folgendes gemacht:
[mm] n!q_1\sum_{j=n+1}^\infty\bruch{1}{j!} +n!q_2\sum_{j=n+1}^\infty\bruch{(-1)^j}{j!} [/mm]
[mm] =n!q_1\frac{(n+1)!}{(n+1)!}\sum_{j=n+1}^\infty\bruch{1}{j!} +n!q_2\frac{(n+1)!}{(n+1)!}\sum_{j=n+1}^\infty\bruch{(-1)^j}{j!}
[/mm]
[mm] =q_1\frac{n!}{(n+1)!}\sum_{j=n+1}^\infty\bruch{(n+1)!}{j!} +q_2\frac{n!}{(n+1)!}\sum_{j=n+1}^\infty\bruch{(n+1)!(-1)^j}{j!}
[/mm]
[mm] =q_1\frac{1}{n+1}\sum_{j=n+1}^\infty\bruch{(n+1)!}{j!} +q_2\frac{1}{n+1}\sum_{j=n+1}^\infty\bruch{(n+1)!(-1)^j}{j!}
[/mm]
Ich weiß, dass [mm] q_1\frac{1}{n+1}\sum_{j=n+1}^\infty\bruch{(n+1)!}{j!} [/mm] laut der Abschätzung nun kleiner als [mm] q_1\frac{1}{n+1}\sum_{j=n+1}^\infty\frac{1}{(j-n-1)!} [/mm] ist,
[mm] q_1\frac{1}{n+1}\sum_{j=n+1}^\infty\bruch{(n+1)!}{j!} \le q_1\frac{1}{n+1}\sum_{j=n+1}^\infty\frac{1}{(j-n-1)!}
[/mm]
aber was ist mit [mm] q_2\frac{1}{n+1}\sum_{j=0}^\infty\bruch{(n+1)!(-1)^j}{j!}?
[/mm]
Ab hier weiß ich leider nicht weiter. Kann es mir jemand Schritt für Schritt erklären?
Vielen Dank
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:46 So 31.10.2010 | Autor: | statler |
Hallo!
Leider finde ich in diesem Beweisgang noch keinen roten Faden, vielleicht solltest du auch die Beweisidee durch ausreichend Text 'rüberbringen'.
> Zeigen Sie, dass keine ganzzahlige Linearkombination von e
> und [mm]e^{-1}[/mm] rational ist.
> 1. Annahme: Es gibt eine nicht-triviale Linearkombi mit
> [mm]q_1e+q_2e^{-1}=q_1\sum_{j=0}^\infty\bruch{1}{j!} +|q_2|\sum_{j=0}^\infty\bruch{(-1)^j}{j!} \le\frac{(|q_1|+|q_2|)\cdot e}{n+1}[/mm]
Wenn ich [mm] q_1, q_2 [/mm] < 0 wähle, gilt das immer und für alle n. Vermutlich ist etwas anderes gemeint. Warum steht in der Mitte [mm] |q_2|?
[/mm]
> 2. wir konstruieren unsere Hilfszahlen:
> [mm]R_n=q_1e+q_2e^{-1}-q_1\sum_{j=0}^n\bruch{1}{j!} -q_2\sum_{j=0}^n\bruch{(-1)^j}{j!}[/mm]
>
> [mm]=n!\left(q_1\sum_{j=n+1}^\infty\bruch{1}{j!} +q_2\sum_{j=n+1}^\infty\bruch{(-1)^j}{j!}\right)[/mm]
>
> Um die Hilfszahlen ganzzahlig zu machen, werden sie mit
> einem geeigneten Hauptnenner multipliziert.
> [mm]A_n=n!*R_n[/mm]
Warum reicht n!? Wenn die Lin.-Komb. = r/s ist, müßte man dann nicht s*n! nehmen?
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Hallo Statler!
Habe alles nochmals (bis auf meine eigenen Schritte) überarbeitet, hoffe du kannst mir nun helfen.
Vielen vielen Dank!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:05 Mo 01.11.2010 | Autor: | statler |
Guten Morgen!
> 4. Nun gilt es die Hilfszahlen nach oben abzuschätzen mit
> Hilfe der Abschätzung
> [mm]1\le {j\choose (n+1)}=\frac{j!}{(n+1)!(j-n-1)!}[/mm] bzw.
> [mm]\frac{(n+1)!}{j!}\le \frac{1}{(j-n-1)!}[/mm]
>
> [mm]|A_n|=\left|n!\left(q_1\sum_{j=n+1}^\infty\bruch{1}{j!} -q_2\sum_{j=n+1}^\infty\bruch{(-1)^j}{j!}\right)\right|\le\left(|q_1|\sum_{j=n+1}^\infty\bruch{1}{j!} -|q_2|\sum_{j=n+1}^\infty\bruch{(-1)^j}{j!}\right)\le (|q_1|+|q_2|)\frac{e}{n+1}[/mm]
>
> Diese Abschätzung hier verstehe ich einfach nicht.
Kann man so auch nicht, weil da die schadhafte Stelle ist. Es muß nämlich
[mm] |A_n|=\left|n!\left(q_1\sum_{j=n+1}^\infty\bruch{1}{j!} -q_2\sum_{j=n+1}^\infty\bruch{(-1)^j}{j!}\right)\right| \le n!\left(|q_1|\sum_{j=n+1}^\infty\bruch{1}{j!} + |q_2|\sum_{j=n+1}^\infty\bruch{1}{j!}\right)\le (|q_1|+|q_2|)\frac{e}{n+1} [/mm]
nach der Dreiecksungleichung heißen, und dann kommst du mit deinem Gerechne unten zum Ziel.
Gruß aus HH-Harburg
Dieter
|
|
|
|