Abschätzung 2 < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien $y, <_0 [mm] \in \IR$, [/mm] und sei [mm] $\epsilon [/mm] > 0$ vorgegeben. Beweisen Sie:
Ist [mm] $y_0 \not= [/mm] 0 $ und ist [mm] $\vert [/mm] y - [mm] y_0 [/mm] < [mm] min(\frac{\vert y_0 \vert}{2}, \frac{\epsilon \vert y_0 \vert^2}{2})$, [/mm] dann ist $y [mm] \not= [/mm] 0$, und es gilt [mm] $\vert \frac{1}{y} [/mm] - [mm] \frac{1}{y_0} \vert [/mm] < [mm] \epsilon$. [/mm] |
Hallo,
wollte es mal allein schaffen, habe aber einen etwas "unorthodoxen" Weg gewählt. Kann mir einer sagen, ob das so zulässig ist:
1) Es gilt $y [mm] \not= [/mm] 0$, denn angenommen $y = 0$. Dann ist [mm] $\vert [/mm] y - [mm] y_0 \vert [/mm] = [mm] \vert [/mm] - [mm] y_0 \vert [/mm] = [mm] \vert y_0 \vert \not< \frac{\vert y_0 \vert}{2}$.
[/mm]
2) Es gilt $y > 0 [mm] \Leftrightarrow y_0 [/mm] > 0$, denn angenommen [mm] $\neg(y [/mm] > 0 [mm] \Leftrightarrow y_0 [/mm] > 0)$. Dann ist [mm] $\vert [/mm] y - [mm] y_0 \vert [/mm] > [mm] \vert y_0 \vert \not< \frac{\vert y_0 \vert}{2}$.
[/mm]
3) Es gilt [mm] $\vert [/mm] y [mm] \vert [/mm] > [mm] \frac{1}{2} \vert y_0 \vert$, [/mm] denn angenommen [mm] $\vert [/mm] y [mm] \vert \le \frac{1}{2} \vert y_0 \vert$. [/mm] Dann folgt mit $y > 0 [mm] \Leftrightarrow y_0 [/mm] > 0$, dass [mm] $\vert [/mm] y - [mm] y_0 \vert \ge \vert \frac{1}{2} y_0 [/mm] - [mm] y_0 \vert \not< \frac{\vert y_0 \vert}{2}$.
[/mm]
4) Es gilt [mm] $\vert [/mm] y [mm] \vert [/mm] < [mm] \frac{3}{2} \vert y_0 \vert$, [/mm] denn angenommen [mm] $\vert [/mm] y [mm] \vert \ge \frac{3}{2} \vert y_0 \vert$. [/mm] Dann folgt mit $y > 0 [mm] \Leftrightarrow y_0 [/mm] > 0$, dass [mm] $\vert [/mm] y - [mm] y_0 \vert \ge \vert \frac{3}{2} y_0 [/mm] - [mm] y_0 \vert \not< \frac{\vert y_0 \vert}{2}$.
[/mm]
5) Es gilt [mm] $\vert \frac{1}{y} [/mm] - [mm] \frac{1}{y_0} \vert [/mm] = [mm] \vert \frac{y_0 - y}{y y_0} \vert [/mm] = [mm] \vert \frac{y - y_0}{y y_0} \vert [/mm] < [mm] \vert \frac{\epsilon \vert y_0 \vert^2}{2 y y_0} \vert [/mm] < [mm] \epsilon$, [/mm] denn angenommen [mm] $\vert \frac{\epsilon \vert y_0 \vert^2}{2 y y_0} \vert \ge \epsilon$. [/mm] Dann folgt [mm] $\vert \frac{ y_0 }{2 y} \vert \ge [/mm] 1 [mm] \Rightarrow \frac{1}{2} \vert y_0 \vert \ge \vert [/mm] y [mm] \vert \not> \frac{1}{2} \vert y_0 \vert$.
[/mm]
Danke und Gruß,
Martin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:39 Sa 28.11.2020 | Autor: | tobit09 |
Hallo Martin,
> 1) Es gilt [mm]y \not= 0[/mm], denn angenommen [mm]y = 0[/mm]. Dann ist [mm]\vert y - y_0 \vert = \vert - y_0 \vert = \vert y_0 \vert \not< \frac{\vert y_0 \vert}{2}[/mm].
Ja.
(Ich würde [mm] $\ge$ [/mm] statt [mm] $\not<$ [/mm] schreiben.)
> 2) Es gilt [mm]y > 0 \Leftrightarrow y_0 > 0[/mm], denn angenommen
> [mm]\neg(y > 0 \Leftrightarrow y_0 > 0)[/mm]. Dann ist [mm]\vert y - y_0 \vert > \vert y_0 \vert \not< \frac{\vert y_0 \vert}{2}[/mm].
Wie kommst du von [mm] $\neg(y [/mm] > 0 [mm] \Leftrightarrow y_0 [/mm] > 0)$ auf [mm] $\vert [/mm] y - [mm] y_0 \vert [/mm] > [mm] \vert y_0\vert$? [/mm] Das ist korrekt, sollte aber aus meiner Sicht näher begründet werden.
> 3) Es gilt [mm]\vert y \vert > \frac{1}{2} \vert y_0 \vert[/mm],
Ja.
> denn angenommen [mm]\vert y \vert \le \frac{1}{2} \vert y_0 \vert[/mm].
> Dann folgt mit [mm]y > 0 \Leftrightarrow y_0 > 0[/mm], dass [mm]\vert y - y_0 \vert \ge \vert \frac{1}{2} y_0 - y_0 \vert \not< \frac{\vert y_0 \vert}{2}[/mm].
Stimmt zwar, aber wie begründest du [mm] $\vert [/mm] y - [mm] y_0 \vert \ge \vert \frac{1}{2} y_0 [/mm] - [mm] y_0 \vert$? [/mm] Hier überlässt du sehr viel dem Leser...
> 4) Es gilt [mm]\vert y \vert < \frac{3}{2} \vert y_0 \vert[/mm],
> denn angenommen [mm]\vert y \vert \ge \frac{3}{2} \vert y_0 \vert[/mm].
> Dann folgt mit [mm]y > 0 \Leftrightarrow y_0 > 0[/mm], dass [mm]\vert y - y_0 \vert \ge \vert \frac{3}{2} y_0 - y_0 \vert \not< \frac{\vert y_0 \vert}{2}[/mm].
Hier gilt Analoges zu (3).
> 5) Es gilt [mm]\vert \frac{1}{y} - \frac{1}{y_0} \vert = \vert \frac{y_0 - y}{y y_0} \vert = \vert \frac{y - y_0}{y y_0} \vert < \vert \frac{\epsilon \vert y_0 \vert^2}{2 y y_0} \vert < \epsilon[/mm],
> denn angenommen [mm]\vert \frac{\epsilon \vert y_0 \vert^2}{2 y y_0} \vert \ge \epsilon[/mm].
> Dann folgt [mm]\vert \frac{ y_0 }{2 y} \vert \ge 1 \Rightarrow \frac{1}{2} \vert y_0 \vert \ge \vert y \vert \not> \frac{1}{2} \vert y_0 \vert[/mm].
Ja.
(Das [mm] $\not>\frac{1}{2}|y_0|$ [/mm] würde ich weglassen und stattdessen auf den Widerspruch zu 3) verweisen.)
Du hast die Aufgabe in der Tat sehr unorthodox gelöst.
Der Kern deiner Argumentation steckt in 5).
4) verwendest du gar nicht, kannst du also einfach streichen.
Aus 1) bis 3) benötigst du eigentlich nur [mm] |y|>\frac{1}{2}|y_0|>0.
[/mm]
Die Ungleichung [mm] $|y|>\frac{1}{2}|y_0|$ [/mm] erhält man fast geschenkt, wenn man zwei Rechenregeln aus der Analysis kennt:
a) Für alle reellen Zahlen $a$ und $b$ gilt [mm] $|a-b|\ge\left||a|-|b|\right|$. [/mm] ("Abstände werden nicht größer, wenn man Beträge nimmt.")
b) Für alle reellen Zahlen $a$ und [mm] $a_0$ [/mm] sowie alle [mm] $\delta>0$ [/mm] (bzw. sogar für alle reellen Zahlen [mm] $\delta$) [/mm] gilt die Äquivalenz
[mm] $|a-a_0|<\delta\iff a_0-\delta
("$a$ hat zu [mm] $a_0$ [/mm] genau dann kleineren Abstand als [mm] $\delta$, [/mm] wenn $a$ im Intervall [mm] $(a_0-\delta,a_0+\delta)$ [/mm] liegt.")
In deiner Aufgabe haben nach Voraussetzung $y$ und [mm] $y_0$ [/mm] Abstand kleiner [mm] $\delta:=\frac{|y_0|}{2}$.
[/mm]
Unter Verwendung von a) überlegt man sich, dass auch $|y|$ und [mm] $|y_0|$ [/mm] Abstand kleiner [mm] $\delta$ [/mm] haben.
Nach b) und Definition von [mm] $\delta$ [/mm] bedeutet letzteres nichts anderes als [mm] $|y_0|-\frac{|y_0|}{2}<|y|<|y_0|+\frac{|y_0|}{2}$.
[/mm]
Erstere dieser beiden Ungleichungen liefert wie gewünscht [mm] $|y|>\frac{1}{2}|y_0|$.
[/mm]
Wann immer du eine Ungleichung der Art [mm] $|y-y_0|<\gamma$ [/mm] siehst, kann es hilfreich sein, sie zu lesen als "$y$ liegt nahe an [mm] $y_0$, [/mm] genauer gesagt im Intervall [mm] $(y_0-\gamma,y_0+\gamma)$".
[/mm]
Viele Grüße
Tobias
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:23 Sa 28.11.2020 | Autor: | sancho1980 |
Hallo,
super vielen Dank!
> Aus 1) bis 3) benötigst du eigentlich nur
> [mm]|y|>\frac{1}{2}|y_0|>0.[/mm]
Nicht ganz, denn 1) ist laut Aufgabenstellung auch zu zeigen.
Viele Grüße,
Martin
edit: Merk grad, du hast ja noch ...$> 0$ geschrieben ...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:21 Sa 28.11.2020 | Autor: | tobit09 |
> > Aus 1) bis 3) benötigst du eigentlich nur
> > [mm]|y|>\frac{1}{2}|y_0|>0.[/mm]
>
> Nicht ganz, denn 1) ist laut Aufgabenstellung auch zu
> zeigen.
> [...]
> edit: Merk grad, du hast ja noch ...[mm]> 0[/mm] geschrieben ...
Du hast schon Recht, man sollte explizit erklären warum [mm] $y\not=0$ [/mm] gilt.
Das folgt in der Tat aus $|y|>0$, was wir wiederum aus der Ungleichungskette [mm] $|y|>\frac{1}{2}|y_0|>0$ [/mm] (hier geht [mm] $y_0\not=0$ [/mm] ein) erhalten.
|
|
|
|