www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Abschätzung Spekralnorm
Abschätzung Spekralnorm < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung Spekralnorm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 So 01.11.2015
Autor: sissile

Aufgabe
Für A [mm] \in \mathbb{K}^{m \tmes n} [/mm] gilt [mm] ||A||_2 \le (||A||_1 ||A||_{\infty})^{\frac{1}{2}}. [/mm]

Unsere Definitionen:
Wobei [mm] ||A||_1 [/mm] := [mm] max_{1\le j \le n} \sum_{i=1}^m |a_{ij}| [/mm] bzw. nach einer Übung duch die Betragssummennorm induzierte Norm
[mm] ||A||_{\infty} [/mm] := [mm] max_{1\le i\le n} \sum_{j=1}^n |a_{ij}| [/mm] bzw. nach Übung durch die Maximumsnorm induzierte Norm.
[mm] ||A||_2 [/mm] ist die Spektralnorm, die von der euklidischen Norm induziert wird bzw. schon gezeigt [mm] ||A||_2 [/mm] ist Wurzel des größte Eigenwert von A*A

Hallo,
Ich hab zwar einen Beweis vorliegen aber ich verstehe einen Schritt nicht:
"Beweis: Nach vorigen Satz in [mm] ||A||_2^2 [/mm] der größte Eigenwert von A*A. Sei x ein zugehöriger Eigenvektor mit [mm] ||x||_1=1. [/mm] Da nach einem Bsp die Spaltensummennorm durch die Betragssummennorm in [mm] \mathbb{K}^m [/mm] und [mm] \mathbb{K}^n [/mm] induziert wird, gilt
[mm] ||A||_2^2 [/mm] = [mm] ||A^{\*}Ax||_1 \le ||A*||_1 ||Ax||_1 \le ||A*||_1 ||A||_1 ||x||_1 [/mm] = [mm] ||A*||_1 ||A||_1. [/mm]
Wegen [mm] ||A^{\*}||_1=||A||_{\infty} [/mm] ist dies gerade die Behauptung."

Frage:
Wie kommt man auf [mm] :||A||_2^2 [/mm] = [mm] ||A^{\*}Ax||_1 [/mm]  ?

[mm] ||A||_2 [/mm] = [mm] max_{||x||_2=1} \sqrt{(Ax)^{\*} (Ax)} =max_{||x||_2=1} \sqrt{x^{\*} A^{\*} (Ax)} [/mm]
bzw.: [mm] ||A||_2= \sqrt{p(A^{\*}A)} [/mm]
wobei p(A):= [mm] max\{|\lambda|: \lambda \in \sigma(A)\} [/mm]
[mm] ||A^{\*} [/mm] A [mm] x||_1 [/mm] = [mm] \sum_{i=1}^n |(A^{\*} [/mm] A [mm] x)_i| [/mm]

LG,
sissi



        
Bezug
Abschätzung Spekralnorm: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 So 01.11.2015
Autor: fred97


> Für A [mm]\in \mathbb{K}^{m \tmes n}[/mm] gilt [mm]||A||_2 \le (||A||_1 ||A||_{\infty})^{\frac{1}{2}}.[/mm]
>  
> Unsere Definitionen:
>  Wobei [mm]||A||_1[/mm] := [mm]max_{1\le j \le n} \sum_{i=1}^m |a_{ij}|[/mm]
> bzw. nach einer Übung duch die Betragssummennorm
> induzierte Norm
>  [mm]||A||_{\infty}[/mm] := [mm]max_{1\le i\le n} \sum_{j=1}^n |a_{ij}|[/mm]
> bzw. nach Übung durch die Maximumsnorm induzierte Norm.
>  [mm]||A||_2[/mm] ist die Spektralnorm, die von der euklidischen
> Norm induziert wird bzw. schon gezeigt [mm]||A||_2[/mm] ist Wurzel
> des größte Eigenwert von A*A
>  Hallo,
>  Ich hab zwar einen Beweis vorliegen aber ich verstehe
> einen Schritt nicht:
>  "Beweis: Nach vorigen Satz in [mm]||A||_2^2[/mm] der größte
> Eigenwert von A*A. Sei x ein zugehöriger Eigenvektor mit
> [mm]||x||_1=1.[/mm] Da nach einem Bsp die Spaltensummennorm durch
> die Betragssummennorm in [mm]\mathbb{K}^m[/mm] und [mm]\mathbb{K}^n[/mm]
> induziert wird, gilt
>  [mm]||A||_2^2[/mm] = [mm]||A^{\*}Ax||_1 \le ||A*||_1 ||Ax||_1 \le ||A*||_1 ||A||_1 ||x||_1[/mm]
> = [mm]||A*||_1 ||A||_1.[/mm]
>  Wegen [mm]||A^{\*}||_1=||A||_{\infty}[/mm] ist
> dies gerade die Behauptung."
>  
> Frage:
>  Wie kommt man auf [mm]:||A||_2^2[/mm] = [mm]||A^{\*}Ax||_1[/mm]

Stell Dir vor, Du sollst über eien Gruppe von 5 Personen bereichten. Wenn Du diesen Personen keine Namen gibst, wird man Deinem Bericht kaum folgen können ....


Sei [mm] \lambda [/mm] größte Eigenwert von A*A. Somit:

   [mm] ||A||_2^2= \lambda. [/mm]


Es war x ein zugehöriger Eigenvektor mit $ [mm] ||x||_1=1. [/mm] $ Das bedeutet unter anderem:


[mm] A^{\*}Ax= \lambda [/mm] x.

Somit:

[mm] $||A||_2^2= \lambda=\lambda*||x||_1=||\lambda [/mm] * [mm] x||_1=||A^{\*}Ax||_1$ [/mm]

FRED


?

>  
> [mm]||A||_2[/mm] = [mm]max_{||x||_2=1} \sqrt{(Ax)^{\*} (Ax)} =max_{||x||_2=1} \sqrt{x^{\*} A^{\*} (Ax)}[/mm]
> bzw.: [mm]||A||_2= \sqrt{p(A^{\*}A)}[/mm]
>  wobei p(A):=
> [mm]max\{|\lambda|: \lambda \in \sigma(A)\}[/mm]
>  [mm]||A^{\*}[/mm] A [mm]x||_1[/mm] =
> [mm]\sum_{i=1}^n |(A^{\*}[/mm] A [mm]x)_i|[/mm]
>  
> LG,
>  sissi
>  
>  


Bezug
                
Bezug
Abschätzung Spekralnorm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 So 01.11.2015
Autor: sissile

Hallo,
Danke für deine Antwort.

> Sei $ [mm] \lambda [/mm] $ größte Eigenwert von A*A. Somit:

   $ [mm] ||A||_2^2= \lambda. [/mm] $


> Es war x ein zugehöriger Eigenvektor mit $ [mm] ||x||_1=1. [/mm] $

Eine Sache noch die nicht ganz klar ist:
Wieso kann ich einen Eigenvektor von [mm] \lambda [/mm] mit [mm] ||x||_1=1 [/mm] wählen?
Für den zugehörigen Eigenvektor x von [mm] \lambda [/mm] gilt klarerweise [mm] ||x||_2=\sqrt{x^{\*}x}=1 [/mm] als Vektor einer Orthonormalbasis von [mm] \mathbb{K}^n. [/mm]
Müsste man dann nicht mit [mm] \hat{x}=\frac{x}{||x||_1} [/mm] arbeiten anstelle von x? ABer wahrscheinlich ist das sowieso egal weil [mm] \hat{x} [/mm] auch ein EIgenvektor zu [mm] \lambda [/mm] ist.

LG,
sissi

Bezug
                        
Bezug
Abschätzung Spekralnorm: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 So 01.11.2015
Autor: fred97

Ist x ein Eigenvektor zum Eigenwert [mm] \lambda, [/mm]  so auch tx  mit t von 0 verschieden

Fred

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de