www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Abschätzung Wurzel
Abschätzung Wurzel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 So 01.04.2012
Autor: Denny22

Hallo an alle,

wie lässt sich zeigen, dass

    [mm] $\sqrt{|x+y|^2+1}\leqslant C(y)+\sqrt{|x|^2+1}$, $x,y\in\IR^d$ [/mm]

gilt. Und wie sieht dann $C(y)$ aus, bzw. wie könnte $C(y)$ beispielswiese aussehen?

Muss man hier Konkavität der Wurzelfunktion verwenden? Mir fehlen irgendwie die Ideen. Laut meiner verwendeten Quelle muss dies funktionieren.

Danke im Vorraus

        
Bezug
Abschätzung Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 So 01.04.2012
Autor: abakus


> Hallo an alle,
>  
> wie lässt sich zeigen, dass
>  
> [mm]\sqrt{|x+y|^2+1}\leqslant C(y)+\sqrt{|x|^2+1}[/mm], [mm]x,y\in\IR^d[/mm]
>  
> gilt. Und wie sieht dann [mm]C(y)[/mm] aus, bzw. wie könnte [mm]C(y)[/mm]
> beispielswiese aussehen?
>  
> Muss man hier Konkavität der Wurzelfunktion verwenden? Mir
> fehlen irgendwie die Ideen. Laut meiner verwendeten Quelle
> muss dies funktionieren.
>  
> Danke im Vorraus

Hallo,
ich habe nur eine vage Vermutung.
Deine Ungleichung ist äquivalent zu
[mm]\sqrt{|x+y|^2+1}-\sqrt{|x|^2+1}\leqslant C(y)[/mm],
und das wiederum führt zu
[mm]\frac{\sqrt{|x+y|^2+1}-\sqrt{|x|^2+1}}{|y|}\le \frac{ C(y)}{|y|}[/mm]
Der linke Term sieht nach einem Differenzenquotienten aus, der irgendwie nach oben abgeschätzt werden kann... (z.B.) durch den Anstieg von f(y)=[mm]\wurzel{|x+y|^2+1}[/mm].
Gruß Abakus



Bezug
        
Bezug
Abschätzung Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 So 01.04.2012
Autor: Gonozal_IX

Hiho,

wie abakus dir bereits schrieb, lässt sich das ganze nun Umformen.
Lasse als Begründung den MWS im Mehrdimensionalen auf die Funktion [mm] $f_x(y) [/mm] = [mm] \sqrt{|x + y|^2 + 1}$ [/mm] los.
Dann erhälst du auch direkt dein C(y) (was zwar nicht schön aussieht, sich aber zumindest explizit angeben lässt).

MFG,
Gono.

Bezug
                
Bezug
Abschätzung Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 So 01.04.2012
Autor: Denny22

Zunächst danke ich Euch beiden für Eure Antworten.

Mal sehen, ob ich es richtig verstanden habe: Wir betrachten die Funktion

    [mm] $f_x(y)=\sqrt{|x+y|^2+1}$, $x,y\in\IR^d$, $f_x:\IR^d\rightarrow\IR$ [/mm]

mit totaler Ableitung (Gradient)

    [mm] $Df_x(y)=\nabla_y f_x(y)=\frac{2(x+y)^T}{\sqrt{|x+y|^2+1}}$. [/mm]

Der Mittelwertsatz besagt nun

    [mm] $f_x(y)-f_x(0)=\int_0^1 Df_x(ty)dt\cdot(y-0)$ [/mm]

oder anders gesagt

    [mm] $\sqrt{|x+y|^2+1}-\sqrt{|x|^2+1}=\int_0^1 \frac{2(x+ty)^T}{\sqrt{|x+ty|^2+1}}dt\cdot [/mm] y$.

Nun erhalten wir aus der Tatsache

    [mm] $\frac{|z|}{\sqrt{|z|^2+1}}\leqslant [/mm] 1$, [mm] $z\in\IR^d$ [/mm]

die Abschätzung

    [mm] $\sqrt{|x+y|^2+1}-\sqrt{|x|^2+1}\leqslant\left|\sqrt{|x+y|^2+1}-\sqrt{|x|^2+1}\right|\leqslant 2\int_0^1\frac{|x+ty|}{\sqrt{|x+ty|^2+1}}dt\cdot |y|\leqslant [/mm] 2|y|$

Bringen wir den 2. Term auf die rechte Seite, so erhalten wir

    [mm] $\sqrt{|x+y|^2+1}\leqslant 2|y|+\sqrt{|x|^2+1}$ [/mm]

mit $C(y)=2|y|$.

Stimmt das so?

Bezug
                        
Bezug
Abschätzung Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Mo 02.04.2012
Autor: fred97


> Zunächst danke ich Euch beiden für Eure Antworten.
>
> Mal sehen, ob ich es richtig verstanden habe: Wir
> betrachten die Funktion
>  
> [mm]f_x(y)=\sqrt{|x+y|^2+1}[/mm], [mm]x,y\in\IR^d[/mm],
> [mm]f_x:\IR^d\rightarrow\IR[/mm]
>  
> mit totaler Ableitung (Gradient)
>  
> [mm]Df_x(y)=\nabla_y f_x(y)=\frac{2(x+y)^T}{\sqrt{|x+y|^2+1}}[/mm].
>  
> Der Mittelwertsatz besagt nun
>  
> [mm]f_x(y)-f_x(0)=\int_0^1 Df_x(ty)dt\cdot(y-0)[/mm]
>  
> oder anders gesagt
>  
> [mm]\sqrt{|x+y|^2+1}-\sqrt{|x|^2+1}=\int_0^1 \frac{2(x+ty)^T}{\sqrt{|x+ty|^2+1}}dt\cdot y[/mm].
>  
> Nun erhalten wir aus der Tatsache
>  
> [mm]\frac{|z|}{\sqrt{|z|^2+1}}\leqslant 1[/mm], [mm]z\in\IR^d[/mm]
>  
> die Abschätzung
>  
> [mm]\sqrt{|x+y|^2+1}-\sqrt{|x|^2+1}\leqslant\left|\sqrt{|x+y|^2+1}-\sqrt{|x|^2+1}\right|\leqslant 2\int_0^1\frac{|x+ty|}{\sqrt{|x+ty|^2+1}}dt\cdot |y|\leqslant 2|y|[/mm]
>  
> Bringen wir den 2. Term auf die rechte Seite, so erhalten
> wir
>  
> [mm]\sqrt{|x+y|^2+1}\leqslant 2|y|+\sqrt{|x|^2+1}[/mm]
>  
> mit [mm]C(y)=2|y|[/mm].
>  
> Stimmt das so?


Ja

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de