www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Abschätzung holomorphe Fkt
Abschätzung holomorphe Fkt < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung holomorphe Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:18 Fr 31.01.2014
Autor: Roodie

Aufgabe
Sei [mm] $B(z_0,r)$ [/mm] der Kreis um [mm] $z_0$ [/mm] mit Radius $r$. Die Funktion [mm] $f:B(z_0,r)\rightarrow\IC$ [/mm] sei holomorph mit $f(0)=0$ und [mm] $|f(z)|\leq [/mm] e$.
Zeigen Sie, dass [mm] $|f(z)|\leq \frac{e\cdot|z-z_0|}{r} [/mm] gilt.

Hallo!

Diese Aufgabe macht mir momentan zu schaffen. Ich habe mit dem Cauchyschen Integralsatz versucht, die Funktion abzuschätzen, bekomme jedoch mit der Standardabschätzung für Integrale nur folgendes raus:

[mm] $|f(z)|=|\frac{1}{2pi}\int_{\partial B(z_0,r)}\frac{f(\varphi)}{\varphi -z}d\varphi|\leq\frac{1}{2\pi} L(B(z_0,r)) max({\frac{f(\varphi)}{\varphi-z}})_{\partial B(z_0,r)}\leq\frac{2\pi r}{2\pi}\cdot e\cdot max({\frac{1}{\varphi-z}})_{\partial B(z_0,r)}\leq r\cdot e\cdot \frac{1}{r-|z-z_0|}$ [/mm]

Das passt irgendwie nicht zusammen.
Ich habe außerdem versucht, den Kreis [mm] B(z_0,r) [/mm] biholomorph auf den Einheitskreis abzubilden und die Eigenschaft dann dort zu zeigen. aber auch für den Fall [mm] z_0=0 [/mm] und $r=1$ bekomme ich nicht das Richtige raus.

Wie kann ich weitermachen? Hat jemand einen Tipp?

Grüße!
R00d


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abschätzung holomorphe Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Fr 31.01.2014
Autor: fred97


> Sei [mm]B(z_0,r)[/mm] der Kreis um [mm]z_0[/mm] mit Radius [mm]r[/mm]. Die Funktion
> [mm]f:B(z_0,r)\rightarrow\IC[/mm] sei holomorph mit [mm]f(0)=0[/mm]

Hast Du Dich vertippt ? Steht da nicht [mm] f(z_0)=0 [/mm] ?

>  und
> [mm]|f(z)|\leq e[/mm].

Ich vermute, dass das für alle z aus [mm] B(z_0,r) [/mm] gelten soll, richtig ?


>  Zeigen Sie, dass [mm]$|f(z)|\leq \frac{e\cdot|z-z_0|}{r}[/mm]
> gilt.
>  Hallo!
>  
> Diese Aufgabe macht mir momentan zu schaffen. Ich habe mit
> dem Cauchyschen Integralsatz versucht, die Funktion
> abzuschätzen, bekomme jedoch mit der Standardabschätzung
> für Integrale nur folgendes raus:
>  
> [mm]|f(z)|=|\frac{1}{2pi}\int_{\partial B(z_0,r)}\frac{f(\varphi)}{\varphi -z}d\varphi| > \leq\frac{1}{2\pi} L(B(z_0,r)) max({\frac{f(\varphi)}{\varphi-z}})_{\partial B(z_0,r)}\leq\frac{2\pi r}{2\pi}\cdot e\cdot max({\frac{1}{\varphi-z}})_{\partial B(z_0,r)}\leq r\cdot e\cdot \frac{1}{r-|z-z_0|}[/mm]


Das geht ja schon mal in die Hose ! [mm] \partial B(z_0,r) [/mm] gehört nicht zum Def. -Bereich von f !



>  
> Das passt irgendwie nicht zusammen.
>  Ich habe außerdem versucht, den Kreis [mm]B(z_0,r)[/mm]
> biholomorph auf den Einheitskreis abzubilden und die
> Eigenschaft dann dort zu zeigen. aber auch für den Fall
> [mm]z_0=0[/mm] und [mm]r=1[/mm] bekomme ich nicht das Richtige raus.


Die Idee ist nicht schlecht ! Definiere [mm] \phi:B(z_0,r) \to [/mm] B(0,1) durch

     [mm] \phi(z)=\bruch{z-z_0}{r} [/mm]

und g:B(0,1) [mm] \to \IC [/mm] durch [mm] g:=\bruch{1}{e}(f \circ \phi^{-1}). [/mm]

Zeige, dass g die Voraussetzungen des Lemmas von Schwarz erfüllt.


Damit haben wir: (*) |g(z)| [mm] \le [/mm] |z|  für alle z mit |z|<1

Löse die Def. - Gleichung von g nach f auf und benutze (*)

FRED

>  
> Wie kann ich weitermachen? Hat jemand einen Tipp?
>  
> Grüße!
>  R00d
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de