www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Abschluss im metrischen Raum
Abschluss im metrischen Raum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschluss im metrischen Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Di 19.11.2013
Autor: rainman_do

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Es sei $(E,d)$ ein metrischer Raum. Für $x_0 \in E$ und $r>0$ seien
$U_{r}(x_{0}):=\{ x\in E: d(x,x_{0})<r \}$ und $B_{r}(x_{0}):= \{ x\in E: d(x,x_{0})\leq r \}$.

Weiter sei $\overline{U_{r}(x_{0})}$ der Abschluss von $U_{r}(x_{0})$.

a) Zeigen Sie, dass $\overline{U_{r}(x_{0})} \subset B_{r}(x_{0})$.

b) Geben Sie ein Beispiel an, dass im Allgemeinen $\overline{U_{x_{0}}=B_{r}(x_{0})$ nicht gilt. Welche Aussagen gelten für das Innere von $(U_{r}(x_{0}))^o$ und den Rand $\partial U_{r}(x_{0})$ von $U_{r}(x_{0})$?

c) Nun sei $(E,||\cdot ||)$ ein normierter Raum und $d$ die von der Norm $||\cdot||$ erzeugte Metrik. Zeigen Sie, dass $\overline{U_{r}(x_{0})}=B_{r}(x_{0})$. Welche Aussagen gelten für das Innere und den Rand von $U_{r}(x_{0})$?

Hallo Zusammen,

ich bin mal wieder auf eure Hilfe angewiesen :-)

Ich denke für solche Aufgaben noch zu sehr in normierten Räumen und kann mich von diesem Denken irgendwie schlecht trennen. Was bei mir halt immer im Hinterkopf ist, ist, dass der Rand von $U_r$ die Menge aller $x$ mit $d(x_{0},x)=r$ ist und somit automatisch $U_{r}=B_{r}$ gilt. Also es wird ja vermutlich daran scheitern, dass die Metrik nicht von einer Norm induziert wird und daher der Abschluss von $U_r$ nicht gleich $B_r$ ist. D.h. ich muss eine Metrik finden, für die der Abschluss von $U_r$ anders aussieht als $B_r$, evtl. gibt es sogar eine Metrik, für die $U_r$ abgeschlossen ist? Habt Ihr einen Ansatz für mich?

Vielen Dank schon mal im Voraus!

        
Bezug
Abschluss im metrischen Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Di 19.11.2013
Autor: fred97


> Es sei [mm](E,d)[/mm] ein metrischer Raum. Für [mm]x_0 \in E[/mm] und [mm]r>0[/mm]
> seien
>  [mm]U_{r}(x_{0}):=\{ x\in E: d(x,x_{0})
> [mm]B_{r}(x_{0}):= \{ x\in E: d(x,x_{0})\leq r \}[/mm].
>  
> Weiter sei [mm]\overline{U_{r}(x_{0})}[/mm] der Abschluss von
> [mm]U_{r}(x_{0})[/mm].
>
> a) Zeigen Sie, dass [mm]\overline{U_{r}(x_{0})} \subset B_{r}(x_{0})[/mm].
>
> b) Geben Sie ein Beispiel an, dass im Allgemeinen
> [mm]\overline{U_{x_{0}}=B_{r}(x_{0})[/mm] nicht gilt. Welche
> Aussagen gelten für das Innere von [mm](U_{r}(x_{0}))^o[/mm] und
> den Rand [mm]\partial U_{r}(x_{0})[/mm] von [mm]U_{r}(x_{0})[/mm]?
>  
> c) Nun sei [mm](E,||\cdot ||)[/mm] ein normierter Raum und [mm]d[/mm] die von
> der Norm [mm]||\cdot||[/mm] erzeugte Metrik. Zeigen Sie, dass
> [mm]\overline{U_{r}(x_{0})}=B_{r}(x_{0})[/mm]. Welche Aussagen
> gelten für das Innere und den Rand von [mm]U_{r}(x_{0})[/mm]?
>  Hallo Zusammen,
>  
> ich bin mal wieder auf eure Hilfe angewiesen :-)
>  
> Ich denke für solche Aufgaben noch zu sehr in normierten
> Räumen und kann mich von diesem Denken irgendwie schlecht
> trennen. Was bei mir halt immer im Hinterkopf ist, ist,
> dass der Rand von [mm]U_r[/mm] die Menge aller [mm]x[/mm] mit [mm]d(x_{0},x)=r[/mm]
> ist und somit automatisch [mm]U_{r}=B_{r}[/mm] gilt. Also es wird ja
> vermutlich daran scheitern, dass die Metrik nicht von einer
> Norm induziert wird und daher der Abschluss von [mm]U_r[/mm] nicht
> gleich [mm]B_r[/mm] ist. D.h. ich muss eine Metrik finden, für die
> der Abschluss von [mm]U_r[/mm] anders aussieht als [mm]B_r[/mm], evtl. gibt
> es sogar eine Metrik, für die [mm]U_r[/mm] abgeschlossen ist? Habt
> Ihr einen Ansatz für mich?

Tipp: diskrete Metrik.

FRED

>  
> Vielen Dank schon mal im Voraus!


Bezug
                
Bezug
Abschluss im metrischen Raum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:22 Di 19.11.2013
Autor: rainman_do

Danke für die Antwort! Geht das denn wohl so wie unten beschrieben, oder muss ich da einen anderen Weg gehen?

a) Scheint mir zu einfach: Sei $x [mm] \in U_{r}(x_{0})$, [/mm] dann ist [mm] $d(x,x_{0})
b) Jede Teilmenge eines metrischen Raums ausgestattet mit der diskreten Metrik ist zugleich offen und abgeschlossen, also ist [mm] $\overline{U_{r}(x_{0})}=U_{r}(x_{0})$ [/mm] und insbesondere [mm] $\ne B_{r}(x_{0})$. [/mm] Außerdem wäre dann [mm] $(U_{r}(x_{0}))^{o}=\overline{U_{r}(x_{0})}=U_{r}(x_{0})$ [/mm] und was ist dann [mm] $\partial U_{r}(x_{0})$? [/mm] Die leere Menge?

c) Da ist es ja (hoffentlich) so, wie ich oben vermutet hatte, nämlich dass [mm] $\partial U_{r}(x_{0})=\{ x\in E : d(x,x_{0})=r\} [/mm] und so weiter...

Vielen Dank schon mal!

Bezug
                        
Bezug
Abschluss im metrischen Raum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 21.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de