www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstände zeigen
Abstände zeigen < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstände zeigen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:41 Mi 01.06.2011
Autor: pramar

Aufgabe
Sei P ein beliebiger innerer Punkt des spitzwinklingen Dreiecks ABC. Man zeige, dass der größte Abstand D des Punktes P vom Rand des Dreiecks wenigstens doppelt so groß ist wie der kleinste Abstand d. Wann gilt D=2d?

Hallo! Ich habe diese Aufgabe zu lösen und komm nicht so recht weiter. Kann mir jemand einen Denkanstoss geben? vielen Dank! Mfg Pramar

        
Bezug
Abstände zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Mi 01.06.2011
Autor: Blech

Hi,

wenn Du einen Punkt nimmst, der direkt neben dem Rand liegt, ist die Sache absolut klar. Du willst also Punkte, wo das Verhältnis D/d möglichst klein ist. Nimm Dir mal ein paar ausgezeichnete Punkte, z.B. an welchem Punkt ist d am größten? Und wo ist D am kleinsten? Und wie sieht's jeweils mit dem Verhältnis dort aus. Wie verlaufen die Strecken zum nächsten und zum entferntesten Punkt für beliebige P?

ciao
Stefan

Bezug
                
Bezug
Abstände zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Mi 01.06.2011
Autor: pramar

Ok danke, das klingt schon sehr gut. muss ich auch noch unterscheiden, ob das spitzwinklige Dreieck gleichseitig oder gleichschenklig oder allgemein ist? ich denke das macht einen unterschied

Bezug
                        
Bezug
Abstände zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Mi 01.06.2011
Autor: Blech

Probier's aus. Das ist mein ganzer Punkt. =)

Such Dir verschiedene logische Möglichkeiten raus und versuch dann zu verallgemeineren. Krieg ein Gefühl für das Problem und konkretisier das dann in einer sauberen Lösung. Das ist es auch, was Dir solche Aufgaben beibringen sollen.

Du hattest etwas allgemein gefragt, deswegen auch diese allgemeine Antwort, denn so lernst Du wirklich am meisten aus der Aufgabe. Wenn Du an etwas spezifischem hängst (oder eben wirklich verschiedene Sachen durchprobiert hast und trotzdem nicht weiterkommst), dann können wir das dann natürlich näher erörtern.

ciao
Stefan

Bezug
                                
Bezug
Abstände zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:37 Fr 03.06.2011
Autor: pramar

Hallo! Das erste Problem, das ich habe ist, was genau soll der Abstand vom Punkt zum Rand sein? ist damit das Lot gemeint (d.h. jeweils der kürzeste Abstand)?

Bezug
                                        
Bezug
Abstände zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Fr 03.06.2011
Autor: M.Rex


> Hallo! Das erste Problem, das ich habe ist, was genau soll
> der Abstand vom Punkt zum Rand sein? ist damit das Lot
> gemeint (d.h. jeweils der kürzeste Abstand)?  

Genau das ist gemeint.

Fälle von dem Punkt mal die Lote zu den drei Seiten des Dreiecks.

Marius


Bezug
                                        
Bezug
Abstände zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Fr 03.06.2011
Autor: fred97


> Hallo! Das erste Problem, das ich habe ist, was genau soll
> der Abstand vom Punkt zum Rand sein? ist damit das Lot
> gemeint (d.h. jeweils der kürzeste Abstand)?  

Nennen wir das Dreieck einfach [mm] \Delta. [/mm] Mit P [mm] \in \Delta^{o} [/mm] ist der kürzeste Abstand von P zum Rand von [mm] \Delta: [/mm]

               [mm] $min~~\{||X-P||: X \in \partial \Delta\}||$. [/mm]

FRED


Bezug
                                        
Bezug
Abstände zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Fr 03.06.2011
Autor: Blech

Hi,

deswegen meinte ich, daß Du mal rumprobieren sollst. Klarerweise hat der Inkreismittelpunkt den gleichen Abstand von den drei Seiten, also kann das nicht gefragt sein.

ciao
Stefan

Bezug
                                                
Bezug
Abstände zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 So 05.06.2011
Autor: pramar

Ok wenn ich jetzt mal den Innkreismittelpunkt hernehme. Dieser hat ja wie du sagts, zu jeder Seite den gleichen Abstand. Das ist mir klar. Aber was wäre dann der größte Abstand von diesem Punkt zum Rand? Muss dass nicht der Abstand zu einer Ecke sein? Ansonsten ist mir das Problem total unklar. Mit dem Begriff Rand kann ich wenig anfangen? Ich brauch die Aufgabe bis Mittwoch.....

Bezug
                                                        
Bezug
Abstände zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 So 05.06.2011
Autor: abakus


> Ok wenn ich jetzt mal den Innkreismittelpunkt hernehme.
> Dieser hat ja wie du sagts, zu jeder Seite den gleichen
> Abstand. Das ist mir klar. Aber was wäre dann der größte
> Abstand von diesem Punkt zum Rand? Muss dass nicht der
> Abstand zu einer Ecke sein? Ansonsten ist mir das Problem
> total unklar. Mit dem Begriff Rand kann ich wenig anfangen?
> Ich brauch die Aufgabe bis Mittwoch.....

Nimm die Menge aller Punkte der Ebene, in der auch das Dreieck liegt.
Entferne von dieser Menge
- alle Punkte im Inneren des Dreiecks
- alle Punkte außerhalb des Dreiecks
Übrig bleibt der Rand des Dreiecks.
Kleinster Abstand eines Punktes zum Rand: das kürzeste der drei Lote.
Größter Abstand eines Punktes zum Rand: die längste der drei Strecken zu den Eckpunkten.
Gruß Abakus


Bezug
                                                                
Bezug
Abstände zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 So 05.06.2011
Autor: pramar

Ok danke Abakus, das war schon sehr hilfreich. mein nächster Schritt ist folgender: Ich zeichne mir die 3 Winkelhalbierenden ein und erzeuge mir so den Innkreismittelpunkt. Weil ja die Punkte auf der Winkelhalbierenden jeweils den gleichen Abstand zu den 2 Seiten haben. Dadurch erhalte ich 3 neue Dreiecke. Kann ich so den kürzesten Abstand "d" klassifizieren? d.h. ich sage wenn der Punkt im gewissen Dreieck liegt, dann ist der kürzeste Abstand das Lot auf die entsprechende Grundseite.  lg Pramar

Bezug
                                                                        
Bezug
Abstände zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 So 05.06.2011
Autor: abakus


> Ok danke Abakus, das war schon sehr hilfreich. mein
> nächster Schritt ist folgender: Ich zeichne mir die 3
> Winkelhalbierenden ein und erzeuge mir so den
> Innkreismittelpunkt. Weil ja die Punkte auf der
> Winkelhalbierenden jeweils den gleichen Abstand zu den 2
> Seiten haben. Dadurch erhalte ich 3 neue Dreiecke. Kann ich
> so den kürzesten Abstand "d" klassifizieren? d.h. ich sage
> wenn der Punkt im gewissen Dreieck liegt, dann ist der
> kürzeste Abstand das Lot auf die entsprechende Grundseite.
>  lg Pramar

Hallo,
mache dir klar, dass jeder andere Punkt im Inneren des Dreiecks zu einer der Seiten einen kürzeren Abstand als den Inkreisradius besitzt.
Der Inkreisradius wird dir (später) zur Abschätzung im Rahmen einer Ungleichungskette dienen.
Gruß Abakus

Bezug
                                                                                
Bezug
Abstände zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 So 05.06.2011
Autor: pramar

ja das ist mir eigentlich klar. Kann ich jetzt behaupten, dass der kleinste Abstand "d" eines Punktes vom Rand maximal der Innkreisradius sein kann?

Bezug
                                                                                        
Bezug
Abstände zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 So 05.06.2011
Autor: abakus


> ja das ist mir eigentlich klar. Kann ich jetzt behaupten,
> dass der kleinste Abstand "d" eines Punktes vom Rand
> maximal der Innkreisradius sein kann?  

Das kannst du nicht einfach behaupten; das musst du beweisen.
Gruß Abakus



Bezug
                                                                                                
Bezug
Abstände zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 So 05.06.2011
Autor: pramar

ok aber ich habe keine Ahnung wie, kannst du mir da weiterhelfen? ich bräuchte einen weiteren Denkanstoss, denn mit dem großen Abstand "D" komme ich nicht weiter.....lg

Bezug
                                                                                                        
Bezug
Abstände zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 So 05.06.2011
Autor: abakus


> ok aber ich habe keine Ahnung wie, kannst du mir da
> weiterhelfen? ich bräuchte einen weiteren Denkanstoss,
> denn mit dem großen Abstand "D" komme ich nicht
> weiter.....lg

Der Inkreismittelpunkt ist nicht nur der Schnittpunkt der drei Winkelhalbierenden, sondern auch der Schnittpunkt von 3 Geraden, die parallel zur jeweiligen Dreiecksseite verlaufen und zu dieser den Abstand [mm] r_i [/mm] besitzen. Du musst zumindest begründen, dass du, wenn du dich vom Umkreismittelpunkt wegbewegst, gleichzeitig einer der Seiten näherkommst.


Bezug
                                                                                                                
Bezug
Abstände zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 So 05.06.2011
Autor: pramar

kann es sein dass dich verschrieben hast? Wolltest statt Umkreismittelpunkt nicht Innkreismittelpunkt schreiben?

Bezug
                                                                                                                        
Bezug
Abstände zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 So 05.06.2011
Autor: abakus


> kann es sein dass dich verschrieben hast? Wolltest statt
> Umkreismittelpunkt nicht Innkreismittelpunkt schreiben?  

Richtig (allerdings nur mit einem "n").


Bezug
                                                                                                                                
Bezug
Abstände zeigen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:31 So 05.06.2011
Autor: pramar

alles klar ^^. Aber wie gesagt hänge ich jetzt wieder. Wie muss ich mit dem größten Abstand "D" verfahren? Habe versucht mir den Umkreismittelpunkt einzuzeichnen, kann daraus aber leider keine Folgerungen ziehen ...

Bezug
                                                                                                                                        
Bezug
Abstände zeigen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mo 13.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Abstände zeigen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:31 Mo 06.06.2011
Autor: pramar

Hallo nochmal! Zu folgender Aufgabe habe ich mir überlegt: den kleinsten Abstand "d" kann ich durch den Innkreisradius nach oben beschränken. Dasselbe kann ich doch für den größten Abstand machen; ich beschränke diesen nach unten durch den Umkreismittelpunkt. Stimmt das? bzw. wie kann ich das argumentieren? d.h. mein kleinstes Verhältnis von D und d habe ich wenn Innkreismittelpunkt und Umkreismittelpunkt zusammenfallen. Wenn ich das über die Entfernungsformel mache: Entfernung vom Umkreismittelpunkt zum Inkreismittelpunkt ist ja Wurzel aus(R(R-2r)). Wenn sie zusammenfallen sollen dann muss diese Entfernung Null sein d.h. R=2r. Fallen sie aber nicht zusammen dann wird entweder R (sprich D) größer oder r (sprich d) kleiner und daraus folgt die Behauptung. Kann ich so argumtentieren oder ist das zu waage? lg pramar

Bezug
                
Bezug
Abstände zeigen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:23 Di 07.06.2011
Autor: pramar

Hallo nochmal! Kann mir jemand bitte helfen?? Kann mir jemand sagen wie ich zeigen kann, dass der kleine Abstand d maximal der Innkreisradius sein kann und der große minimal der Umkreisradius sein kann? Wenn ich das gezeigt habe dann ist alles klar. Bitte um rasche Hilfe!!lg pra mar

Bezug
                        
Bezug
Abstände zeigen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Mi 15.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Abstände zeigen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Sa 11.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Abstände zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:53 So 12.06.2011
Autor: Al-Chwarizmi


> Hallo nochmal! Zu folgender Aufgabe habe ich mir überlegt:
> den kleinsten Abstand "d" kann ich durch den Innkreisradius

Es heißt Inkreis.
Zum Thema "Innkreis": []Innkreis

> nach oben beschränken. Dasselbe kann ich doch für den
> größten Abstand machen; ich beschränke diesen nach unten
> durch den Umkreismittelpunkt. Stimmt das? [ok]

Ja.

> bzw. wie kann ich das argumentieren?

Zeige, dass jeder andere innere Punkt des Dreiecks von
wenigstens einer der Ecken einen kleineren Abstand
hat als der Umkreismittelpunkt.

> d.h. mein kleinstes Verhältnis von D
> und d habe ich wenn Innkreismittelpunkt und
> Umkreismittelpunkt zusammenfallen. Wenn ich das über die
> Entfernungsformel mache: Entfernung vom Umkreismittelpunkt
> zum Inkreismittelpunkt ist ja Wurzel aus(R(R-2r)).

Diese Formel war mir noch nicht mal bekannt. Danke für
den Hinweis !

> Wenn sie
> zusammenfallen sollen dann muss diese Entfernung Null sein
> d.h. R=2r. Fallen sie aber nicht zusammen dann wird
> entweder R (sprich D) größer oder r (sprich d) kleiner
> und daraus folgt die Behauptung. Kann ich so argumentieren
> oder ist das zu waage?

Du meinst " zu []vage "

Nein, ich denke dass das in etwa passt.

LG   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de