www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Abstand Funktion-Ursprung
Abstand Funktion-Ursprung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Funktion-Ursprung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mo 14.07.2008
Autor: piep

Aufgabe
Bestimmen Sie den kleinsten Abastand des Graphen der Funktion [mm] e^{-(x^{2}+y^{2})} [/mm] , x,y [mm] \in \IR [/mm] vom Ursprung.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich weiß leider absolut nicht wie ich diese Aufgabe angehen soll und wäre dankbar für einen kleinen Ansatz, damit ich die Aufgabe selber weiterrechnen kann. Muss es für die Klausur ja auch selber können

gruß, piep

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abstand Funktion-Ursprung: Abstandsformel
Status: (Antwort) fertig Status 
Datum: 20:19 Mo 14.07.2008
Autor: Loddar

Hallo piep!


Verwende die Abstandsformel zweier Punkte im [mm] $\IR^3$ [/mm] mit:
[mm] $$d_{PQ} [/mm] \ = \ d(x,y,z) \ = \ [mm] \wurzel{\left(x_Q-x_P\right)^2+\left(y_Q-y_P\right)^2+\left(z_Q-z_P\right)^2 \ }$$ [/mm]
Setze hier nun $P \ [mm] \left(0 \ / \ 0\ / \ 0\right)$ [/mm] sowie $Q \  [mm] \left(x\ / \ y\ / \ e^{-\left(x^2+y^2\right)} \ \right)$ [/mm] ein.


Gruß
Loddar


Bezug
                
Bezug
Abstand Funktion-Ursprung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Mo 14.07.2008
Autor: piep

Hallo Loddar,

>  
>
> Verwende die Abstandsformel zweier Punkte im [mm]\IR^3[/mm] mit:
>  [mm]d_{PQ} \ = \ d(x,y,z) \ = \ \wurzel{\left(x_Q-x_P\right)^2+\left(y_Q-y_P\right)^2+\left(z_Q-z_P\right)^2 \ }[/mm]
>  
> Setze hier nun [mm]P \ \left(0 \ / \ 0\ / \ 0\right)[/mm] sowie [mm]Q \ \left(x\ / \ y\ / \ e^{-\left(x^2+y^2\right)} \ \right)[/mm]
> ein.
>  
>
> Gruß
>  Loddar
>  

Ich muss sagen, ich versteh ehrlich gesagt nicht, wieso ich diese Abstandsfunktion nehmen muss. also generell glaube ich schon, aber wieso im [mm] \IR^{3} [/mm] ? Ich dachte die Funktion würde von [mm] \IR^{2} \to \IR [/mm] gehen, wieso dann [mm] \IR^{3} [/mm] ?  und wieso genau diese Punkte? Also der eine der Nullpunkt, ok. Aber der andere? Kannst du mir das irgendwie erklären? Hab ein paar Schwierigkeiten mit dem mehrdimensionalen Bereicht.

gruß piep

Bezug
                        
Bezug
Abstand Funktion-Ursprung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Mo 14.07.2008
Autor: leduart

Hallo
Der Graph der fkt ist eine Fläche im [mm] \IR^3. [/mm] schreib z=f(x,y) dann siehst dus.
zu jedem(x,y) der x-yEbene liefer f einen Wert, den du dir als Höhe über dem Punkt vorstellen kannst.
Gruss leduart

Bezug
                        
Bezug
Abstand Funktion-Ursprung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Mo 14.07.2008
Autor: Bastiane

Hallo piep!

> > Verwende die Abstandsformel zweier Punkte im [mm]\IR^3[/mm] mit:
>  >  [mm]d_{PQ} \ = \ d(x,y,z) \ = \ \wurzel{\left(x_Q-x_P\right)^2+\left(y_Q-y_P\right)^2+\left(z_Q-z_P\right)^2 \ }[/mm]
>  
> >  

> > Setze hier nun [mm]P \ \left(0 \ / \ 0\ / \ 0\right)[/mm] sowie [mm]Q \ \left(x\ / \ y\ / \ e^{-\left(x^2+y^2\right)} \ \right)[/mm]
> > ein.

> Ich muss sagen, ich versteh ehrlich gesagt nicht, wieso ich
> diese Abstandsfunktion nehmen muss. also generell glaube
> ich schon, aber wieso im [mm]\IR^{3}[/mm] ? Ich dachte die Funktion
> würde von [mm]\IR^{2} \to \IR[/mm] gehen, wieso dann [mm]\IR^{3}[/mm] ?  und
> wieso genau diese Punkte? Also der eine der Nullpunkt, ok.

Ich würde das so erklären: du willst den Abstand des Ursprungs von einem Punkt der Geraden wissen (bzw. den kürzesten Abstand). Wenn du dir den Punkt im [mm] \IR^3 [/mm] vorstellst, dann ist alles, was du über diesen Punkt weißt, dass, wenn er die x-Koordinate x und die y-Koordinate y hat, dann die z-Koordinate genau [mm] e^{-\left(x^2+y^2\right)} [/mm] ist, denn das bedeutet ja gerade, dass der Punkt auf der Geraden liegt. Also berechnest du den Abstand dieser zwei Punkte mit obiger Formel.

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de