www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Abstand Gerade und Punkt
Abstand Gerade und Punkt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Gerade und Punkt: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:19 Mo 07.11.2005
Autor: Heidschnucke

Hallo!
Wir haben als Hausaufgabe folgende Aufgabe bekommen:
Eine Gerade geht durch P1 (-2/-1) und P2 (1/8). Wie weit ist P3 (1/13) von ihr entfernt?
Die Geradengleichung habe ich schon ausgerechnet:
g=  [mm] \pmat{ -2 \\ -1 } [/mm] +  [mm] \lambda \pmat{ 3 \\ 9 } [/mm]
Jetzt muss ich doch den Normalenvektor ausrechnen und die Gleichung in die HNF überführen, um d und dann den Abstand zu berechnen, oder? Und da komm ich nicht weiter...
Danke für eure Hilfe!

        
Bezug
Abstand Gerade und Punkt: Hinweis
Status: (Antwort) fertig Status 
Datum: 20:15 Mo 07.11.2005
Autor: MathePower

Hallo Heidschnucke,

> Hallo!
>  Wir haben als Hausaufgabe folgende Aufgabe bekommen:
>  Eine Gerade geht durch P1 (-2/-1) und P2 (1/8). Wie weit
> ist P3 (1/13) von ihr entfernt?
> Die Geradengleichung habe ich schon ausgerechnet:
> g=  [mm]\pmat{ -2 \\ -1 }[/mm] +  [mm]\lambda \pmat{ 3 \\ 9 }[/mm]
>  Jetzt
> muss ich doch den Normalenvektor ausrechnen und die
> Gleichung in die HNF überführen, um d und dann den Abstand
> zu berechnen, oder? Und da komm ich nicht weiter...
> Danke für eure Hilfe!

du weißt das der kürzeste Abstand immer das Lot ist. In diesem Fall ist es das Lot von einem Punkt [mm]P_{3}[/mm] auf die Gerade g. Das heisst der Vektor des Lotes muß senkrecht auf dem Richungsvektor der Geraden stehen.

Also:

[mm]\;=\;0[/mm]

Unter <,> ist das Standardskalarprodukt zu verstehen.

Diese Gleichung löst Du nach [mm]\lambda[/mm] auf.

Der Betrag des Vektors [mm]P_{3}\;-\;\pmat{ -2 \\ -1 }\;-\;\lambda \pmat{ 3 \\ 9}[/mm] gibt dann den gesuchten Abstand an.

Gruß
MathePower

Bezug
                
Bezug
Abstand Gerade und Punkt: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:17 Di 08.11.2005
Autor: Heidschnucke

Hallo Mathepower!
Danke für deine Antwort, aber ich hab doch noch einige Fragen... =)

> du weißt das der kürzeste Abstand immer das Lot ist. In
> diesem Fall ist es das Lot von einem Punkt [mm]P_{3}[/mm] auf die
> Gerade g. Das heisst der Vektor des Lotes muß senkrecht auf
> dem Richungsvektor der Geraden stehen.

Diesen Teil versteh ich ja noch. Aber wie kommst du eigentlich dann auf die nächste Gleichung? Und wieso ist da ein Sklalarprodukt drin?

> Also:
>  
> [mm]\;=\;0[/mm]
>  
> Unter <,> ist das Standardskalarprodukt zu verstehen.

> Diese Gleichung löst Du nach [mm]\lambda[/mm] auf.

Hab ich gemacht, bzw. versucht, aber weiter komm ich nicht, ich muss doch statt  [mm] \pmat{ 3 \\ 14 } [/mm]  einen konkreten Wert haben, oder?
[mm] \pmat{ 3 \\ 14 } [/mm] - 90 [mm] \lambda [/mm] = 0

> Der Betrag des Vektors [mm]P_{3}\;-\;\pmat{ -2 \\ -1 }\;-\;\lambda \pmat{ 3 \\ 9}[/mm]
> gibt dann den gesuchten Abstand an.

Muss ich dann hier für [mm] \lambda [/mm] einen konkreten Wert einsetzen, den ich vorher ausgerechnet habe?
Tschuldigung für die vielen Fragen, aber irgendwie hab ich den Durchblick verloren (falls er vorher schon mal da war =).
Danke für deine Hilfe!!
Gruß
Heidschnucke

Bezug
                        
Bezug
Abstand Gerade und Punkt: Erklärung
Status: (Antwort) fertig Status 
Datum: 21:17 Di 08.11.2005
Autor: MathePower

Hallo Heidschnucke,

> Hallo Mathepower!
>  Danke für deine Antwort, aber ich hab doch noch einige
> Fragen... =)
>  
> > du weißt das der kürzeste Abstand immer das Lot ist. In
> > diesem Fall ist es das Lot von einem Punkt [mm]P_{3}[/mm] auf die
> > Gerade g. Das heisst der Vektor des Lotes muß senkrecht auf
> > dem Richungsvektor der Geraden stehen.
>  Diesen Teil versteh ich ja noch. Aber wie kommst du
> eigentlich dann auf die nächste Gleichung? Und wieso ist da
> ein Sklalarprodukt drin?

Aufgrund der Orthogonalität.

>  
> > Also:
>  >  
> > [mm]\;=\;0[/mm]

Zeichne die Gerade g auf ein Blatt Papier. Ebenso den Punkt [mm]P_{3}[/mm]. Verbinde den Anfangspunkt A der Geraden g mit dem Punkt [mm]P_{3}[/mm]. Fälle nun das Lot von [mm]P_{3}[/mm] auf die Gerade g. Man erhält einen neuen Punkt B[mm]\pmat{ -2 \\ -1 }\;+\;\lambda \pmat{ 3 \\ 9}[/mm], der auf der Geraden liegt.

Nun muss es ein [mm]\lambda[/mm] geben, für das der Vektor [mm]P_{3}\;-\;\pmat{ -2 \\ -1 }\;-\;\lambda \pmat{ 3 \\ 9}[/mm]  senkrecht auf dem Vektor[mm]\pmat{ 3 \\ 9}[/mm] steht.

>  
> >  

> > Unter <,> ist das Standardskalarprodukt zu verstehen.
>  
> > Diese Gleichung löst Du nach [mm]\lambda[/mm] auf.
>  Hab ich gemacht, bzw. versucht, aber weiter komm ich
> nicht, ich muss doch statt  [mm]\pmat{ 3 \\ 14 }[/mm]  einen
> konkreten Wert haben, oder?
> [mm]\pmat{ 3 \\ 14 }[/mm] - 90 [mm]\lambda[/mm] = 0
>  
> > Der Betrag des Vektors [mm]P_{3}\;-\;\pmat{ -2 \\ -1 }\;-\;\lambda \pmat{ 3 \\ 9}[/mm]

Du mußt schon das ganze Skalarprodukt ausmultiplizieren:

[mm] \begin{gathered} < \;\left( {\begin{array}{*{20}c} 3 \\ {14} \\ \end{array} } \right)\; - \;\left( {\begin{array}{*{20}c} { - 2} \\ { - 1} \\ \end{array} } \right)\; - \;\lambda \;\left( {\begin{array}{*{20}c} 3 \\ 9 \\ \end{array} } \right),\;\left( {\begin{array}{*{20}c} 3 \\ 9 \\ \end{array} } \right)\; > \; = \;0 \hfill \\ \Leftrightarrow \; < \;\left( {\begin{array}{*{20}c} 3 \\ {14} \\ \end{array} } \right)\; - \;\left( {\begin{array}{*{20}c} { - 2} \\ { - 1} \\ \end{array} } \right),\;\;\left( {\begin{array}{*{20}c} 3 \\ 9 \\ \end{array} } \right)\; > \; - \;\lambda < \;\left( {\begin{array}{*{20}c} 3 \\ 9 \\ \end{array} } \right),\;\left( {\begin{array}{*{20}c} 3 \\ 9 \\ \end{array} } \right)\; > \; = \;0 \hfill \\ \Leftrightarrow \; < \;\left( {\begin{array}{*{20}c} 5 \\ {15} \\ \end{array} } \right)\;,\;\left( {\begin{array}{*{20}c} 3 \\ 9 \\ \end{array} } \right)\; > \; - \;\lambda < \;\left( {\begin{array}{*{20}c} 3 \\ 9 \\ \end{array} } \right),\;\left( {\begin{array}{*{20}c} 3 \\ 9 \\ \end{array} } \right)\; > \; = \;0 \hfill \\ \end{gathered} [/mm]

> > gibt dann den gesuchten Abstand an.
>  Muss ich dann hier für [mm]\lambda[/mm] einen konkreten Wert
> einsetzen, den ich vorher ausgerechnet habe?

Ja.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de