www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstand Punkt-Ebene
Abstand Punkt-Ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt-Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Mi 18.02.2009
Autor: alex12456

Aufgabe
Berechne den Abstand [mm] d_k [/mm]  des Punktes [mm] D_k(5-2k/1/k) [/mm] von der Ebene E 0=2x1+x3


habe die HNF benutzt und bekomme wenn ich [mm] D_k [/mm] einsetze in HNF der ebene
HNF =  -2x1+x3 [mm] /\wurzel{5} [/mm] = 0
einsetzen von [mm] D_k [/mm]
2(5-2k)-k / [mm] \wurzel{5}= [/mm] 0 (vorher mit *-1 multipliziert)

so schön und gut aber was habe ich niunn davon nach angaben soll der Abstand [mm] sein\wurzel{5} [/mm] * 2-k
wie komme ich den darauf?


        
Bezug
Abstand Punkt-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mi 18.02.2009
Autor: alex42

Hallo Namensvetter,

ist doch alles richtig, um auf die angegebene Lösung zu kommen braucht es nur ein paar Umformungen:
[mm] $\frac{2(5-2k)-k}{\wurzel{5}} [/mm] = [mm] \frac{2*5-5k}{\wurzel{5}} [/mm] = [mm] 2\wurzel{5} [/mm] - [mm] \wurzel{5}k [/mm] = [mm] \wurzel{5}(2-k)$ [/mm]

Viele Grüße,
Alex

Bezug
                
Bezug
Abstand Punkt-Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Mi 18.02.2009
Autor: alex12456

Aufgabe
hjmm vlt bin ich doof
aber wie kann man das umformen welches gesetzt steckt den dahinter die wurzel 5 war doch im nenner wieso auf eimal im zähler??
[mm] \frac{2\cdot{}5-5k}{\wurzel{5}} [/mm] = [mm] 2\wurzel{5} [/mm] - [mm] \wurzel{5}k [/mm]    DIESEN schritt verstehe ich nicht,wärst du so nett den für ganz dumme zu erklären??
danke

siehe oben

Bezug
                        
Bezug
Abstand Punkt-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Mi 18.02.2009
Autor: alex42

Ist vielleicht nicht ganz offensichtlich aber nicht schwer: Es gilt doch:
$5 = [mm] (\wurzel{5})^2$ [/mm]
Du kannst also mit [mm] $\wurzel{5}$ [/mm] kürzen.

Bezug
        
Bezug
Abstand Punkt-Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Mi 18.02.2009
Autor: alex12456

Aufgabe
nächste aufgabenstellung :
[mm] D_k´´ [/mm] sei die Senkrechte Projektion des Punktes [mm] D_k [/mm] auf die Ebene ABC
.BESTIMME die Koordinaten von [mm] D_k´´ [/mm]
A(0/0/0) ,B(3/0/6) ;C(1/6/2) und [mm] D_k(5-2k/1/k) [/mm]

die Koordinatenform der Ebene ist   -2x1+x3 =0
HMM wie mache ich das nun mit der senkrechten Projektion einfach [mm] D_k [/mm] in E EINsetzen oder wie müsste man es normal machen?

Bezug
                
Bezug
Abstand Punkt-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Mi 18.02.2009
Autor: alex42

Dass du nicht einfach den Punkt in die Ebene einsetzen kannst, zeigt dir schon das Ergebnis: du bekommst eine Zahl, suchst aber drei (die Koordinaten).

Wenn ich das richtig sehe, hast du ja vorher den Abstand des Punktes zur Ebene berechnet. Senkrechte Projektion heißt, dass du längs des Normalenvektors projezierst. D.h. du müsstest von deinem Punkt [mm] $D_k$ [/mm] "das Abstand-fache in Richtung des (normierten) Normalenvektors gehen", um zu dem gesuchten Punkt P zu kommen. Etwas formaler:
[mm] $\vec{P} [/mm] = [mm] \vec{D_k} [/mm] + [mm] \wurzel{5}(2-k) \vec{n}$, [/mm]
wobei [mm] $\wurzel{5}(2-k)$ [/mm] ja der Abstand und [mm] $\vec{n}$ [/mm] der Normalenvektor aus der HNF ist (vorsicht mit dem Vorzeichen, es könnte sein, dass du [mm] $-\vec{n}$ [/mm] rechnen musst, je nachdem, in welche Richtung der Normalenvektor zeigt).

Bezug
                        
Bezug
Abstand Punkt-Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Mi 18.02.2009
Autor: alex12456

Aufgabe
hmmm okay ich glaube ich habe es begriffen also müsste ich machen
P= [mm] \vektor{5-2k\\ 1\\k}+ \vektor{2( \wurzel{5}(2-k)\\ 0\\-\wurzel{5}(2-k)} [/mm]
??? ist das richtig??
aber ich bekomme voll die komiche koordinate raus und zwar  [mm] P(3k+2\wurzel{5}k/1/k-\wurzel{5}k) [/mm]
ist das richtig??

siehe oben

Bezug
                                
Bezug
Abstand Punkt-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Mi 18.02.2009
Autor: alex42

Ich glaube, du hast die Normierung vergessen. Der normierte Normalenvektor ist ja

[mm] $\vec{n} [/mm] = [mm] \frac{1}{\wurzel{5}}\vektor{-2\\0\\1}$ [/mm]

Damit ergibt sich:

[mm] $\vec{P} [/mm] = [mm] \vektor{5-2k\\1\\k} [/mm] + [mm] \wurzel{5}(2-k) [/mm] * [mm] \frac{1}{\wurzel{5}}\vektor{-2\\0\\1} [/mm] = [mm] \vektor{5-2k\\1\\k} [/mm] + [mm] \vektor{-4+2k\\1\\2-k} [/mm] = [mm] \vektor{1\\1\\2}$ [/mm]

Dieser Punkt liegt in der Ebene - sollte also die Lösung sein.

Bezug
                                        
Bezug
Abstand Punkt-Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Mi 18.02.2009
Autor: alex12456

Aufgabe
danke
noch eine frage ginge das auch über das skalarprodukt weil der Punkt A(0/0/0) ist auch gegeben und liegt auf der ebene und  der projetzierte Punkt [mm] D_k´ [/mm]  liegt ja genau unter [mm] D_k [/mm]
also dachte ich    [mm] \vec{adk´}*\vec{dk´´d_k}=0 [/mm]

also verbindungsvektor von A nach projektierten punkt * Projektierter Punkt verbunden mit [mm] D_k [/mm] =0  
geht das oder nicht,..?
hmm wo ich das grade schreibe denke ich es ginge nicht da ich 2 mal einen unbekannten punkt habe....

s.o

Bezug
                                                
Bezug
Abstand Punkt-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 07:18 Do 19.02.2009
Autor: glie


> danke
>  noch eine frage ginge das auch über das skalarprodukt weil
> der Punkt A(0/0/0) ist auch gegeben und liegt auf der ebene
> und  der projetzierte Punkt [mm]D_k´[/mm]  liegt ja genau unter [mm]D_k[/mm]
>  also dachte ich    [mm]\vec{adk´}*\vec{dk´´d_k}=0[/mm]
>  
> also verbindungsvektor von A nach projektierten punkt *
> Projektierter Punkt verbunden mit [mm]D_k[/mm] =0  
> geht das oder nicht,..?
>  hmm wo ich das grade schreibe denke ich es ginge nicht da
> ich 2 mal einen unbekannten punkt habe....
>  s.o

Prinzipiell kannst du das schon auch über das Skalarprodukt lösen, aber das würd ich mir nicht antun, denn das wird schon komplizierter.

Du müsstest zunächst mal den unbekannten Punkt [mm] D_{k}' [/mm] als allgemeinen Ebenenpunkt [mm] P_{E} [/mm] ansetzen. Dazu brauchst du die Parameterform der Ebene.

Und dann reicht eine Gleichung mit dem Skalarprodukt nicht aus. Du müsstest dann schon zwei Gleichungen aufstellen.

Also zum Beispiel

[mm] \overrightarrow{AP_{E}}\circ \overrightarrow{D_{k}P_{E}}=0 [/mm]
[mm] \overrightarrow{BP_{E}}\circ \overrightarrow{D_{k}P_{E}}=0 [/mm]


Wesentlich einfacher ist es doch, die Lotgerade auf die Ebene durch den Punkt [mm] D_{k} [/mm] aufzustellen. Richtungsvektor ist dabei der Normalenvektor der Ebene. Schneide dann einfach diese Lotgerade mit der Ebene und du hast den gesuchten Punkt [mm] D_{k}'. [/mm]

Dann kannst du auch auf die Normierung verzichten und musst nicht aufpassen in welche Richtung der Normalenvektor zeigt.

Gruß Glie

Bezug
                                                        
Bezug
Abstand Punkt-Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Do 19.02.2009
Autor: alex42


> Wesentlich einfacher ist es doch, die Lotgerade auf die
> Ebene durch den Punkt [mm]D_{k}[/mm] aufzustellen. Richtungsvektor
> ist dabei der Normalenvektor der Ebene. Schneide dann
> einfach diese Lotgerade mit der Ebene und du hast den
> gesuchten Punkt [mm]D_{k}'.[/mm]
>  
> Dann kannst du auch auf die Normierung verzichten und musst
> nicht aufpassen in welche Richtung der Normalenvektor
> zeigt.


Das ist natürlich die allgemeine Art, so eine Aufgabe zu lösen, hätte ich sonst auch so gemacht. Da aber halt vorher der Abstand berechnet werden sollte, kann man diese Information ja auch gleich nutzen. Der Nachteil mit der Lotgerade ist ja, dass man ein lineares Gleichungssystem lösen muss, um den Durchstoßpunkt zu berechnen, und das ist - wenn ich so an meine Abi-Vorbereitung denke - SEHR fehleranfällig ;)


Bezug
                                                                
Bezug
Abstand Punkt-Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Do 19.02.2009
Autor: glie


> > Wesentlich einfacher ist es doch, die Lotgerade auf die
> > Ebene durch den Punkt [mm]D_{k}[/mm] aufzustellen. Richtungsvektor
> > ist dabei der Normalenvektor der Ebene. Schneide dann
> > einfach diese Lotgerade mit der Ebene und du hast den
> > gesuchten Punkt [mm]D_{k}'.[/mm]
>  >  
> > Dann kannst du auch auf die Normierung verzichten und musst
> > nicht aufpassen in welche Richtung der Normalenvektor
> > zeigt.
>  
>
> Das ist natürlich die allgemeine Art, so eine Aufgabe zu
> lösen, hätte ich sonst auch so gemacht. Da aber halt vorher
> der Abstand berechnet werden sollte, kann man diese
> Information ja auch gleich nutzen. Der Nachteil mit der
> Lotgerade ist ja, dass man ein lineares Gleichungssystem
> lösen muss, um den Durchstoßpunkt zu berechnen, und das ist
> - wenn ich so an meine Abi-Vorbereitung denke - SEHR
> fehleranfällig ;)
>  

Muss man nicht....wenn du die Gerade in die Koordinatenform der Ebene einsetzt erhältst du EINE Gleichung mit EINER Unbekannten!!
Das sollte nicht zu fehleranfällig sein.

Gruß Glie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de