www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstand Punkt-Gerade
Abstand Punkt-Gerade < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt-Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Sa 20.10.2007
Autor: Owen

Aufgabe
Berechnen Sie den Abstand zwischen Punkt und Gerade mit Hilfe der Vektorprojektion
G1: [mm] \vec{x}=\vec{a}+\lambda*\vec{u}=\vektor{1 \\ 2 \\ 3}+\lambda*\vektor{-3 \\ 2 \\ 4} [/mm]
Punkt [mm] A=\vektor{-2 \\ 3 \\ -5} [/mm]  

Nun ich habe es nach einem Schema gemacht, welches uns angegeben wurde, komme aber nicht zum richtigen Ergebnis:
Die Punkte C und B liegen beide auf der Geraden. Der Punkt B ist der Fußpunkt, der orthogonal zu Punkt A liegt, daher den kürzesten Abstand hat. Man kann daher einen Umlauf bilden, wo gilt: [mm] \overrightarrow{BA}-\overrightarrow{CA}-\overrightarrow{BC}=0 [/mm]
Für den Abstand gilt dann: [mm] d=\vmat{ \overrightarrow{CA}+\vec{P}\vec{u} (\overrightarrow{CA}) } [/mm]  mit [mm] \overrightarrow{CA}=\overrightarrow{OA}-\overrightarrow{OC}=\vektor{-2 \\ 3 \\ -5}-\vektor{1 \\ 2 \\ 3}=\vektor{-3 \\ 1 \\ -8} [/mm]

[mm] \vec{P}\vec{u}(\overrightarrow{CA}) [/mm]
[mm] =P\vec{u}(\overrightarrow{CA})*\vec{eu} [/mm]
[mm] =(\overrightarrow{CA}*\vec{eu})*\vec{eu} [/mm]
[mm] =(\overrightarrow{CA}*\bruch{\vec{u}}{\vmat{ \vec{u}}})*\bruch{\vec{u}}{\vmat{ \vec{u}}} [/mm]

[mm] =\bruch{1}{(\vec{u})²}*(\overrightarrow{CA}*\vec{u})*\vec{u} [/mm]
[mm] =\bruch{1}{29}*(9+2-32)*\vektor{-3 \\ 2 \\ 4} [/mm]
[mm] d=\vmat{\vektor{-3 \\ 1 \\ -8}-\bruch{21}{29}*\vektor{-3 \\ 2 \\ 4}} [/mm]
=10.94

Aber eigentlich müsste doch 7,67 herauskommen. Wo ist der Fehler?

        
Bezug
Abstand Punkt-Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Sa 20.10.2007
Autor: koepper


> Berechnen Sie den Abstand zwischen Punkt und Gerade mit
> Hilfe der Vektorprojektion
>  G1: [mm]\vec{x}=\vec{a}+\lambda*\vec{u}=\vektor{1 \\ 2 \\ 3}+\lambda*\vektor{-3 \\ 2 \\ 4}[/mm]
>  
> Punkt [mm]A=\vektor{-2 \\ 3 \\ -5}[/mm]
> Nun ich habe es nach einem Schema gemacht, welches uns
> angegeben wurde, komme aber nicht zum richtigen Ergebnis:
>  Die Punkte C und B liegen beide auf der Geraden. Der Punkt
> B ist der Fußpunkt, der orthogonal zu Punkt A liegt, daher
> den kürzesten Abstand hat. Man kann daher einen Umlauf
> bilden, wo gilt:
> [mm]\overrightarrow{BA}-\overrightarrow{CA}-\overrightarrow{BC}=0[/mm]
>  Für den Abstand gilt dann: [mm]d=\vmat{ \overrightarrow{CA}+\vec{P}\vec{u} (\overrightarrow{CA}) }[/mm]
>  mit
> [mm]\overrightarrow{CA}=\overrightarrow{OA}-\overrightarrow{OC}=\vektor{-2 \\ 3 \\ -5}-\vektor{1 \\ 2 \\ 3}=\vektor{-3 \\ 1 \\ -8}[/mm]



warum so kompliziert?
Für den Vektor AB muß gelten: $AB * [mm] \vec{u} [/mm] = 0.$

Setze nun für B einfach den "allgemeinen Punkt" der Geraden ein. Dann bekommst du aus der obigen Gleichung den Geradenparameter, der auf den Fusspunkt verweist.

Gruß
Will

Bezug
                
Bezug
Abstand Punkt-Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Sa 20.10.2007
Autor: Owen

Aufgabe
s.oben

was versteht man unter dem "allgemeinen Punkt"?
Naja, der Weg ist kompliziert, das stimmt, aber ich möchte ihn verstehen. Ich würde gerne wissen, was daran falsch ist, weil es sein könnte, dass man von mir genau diesen Weg verlangen wird.
Aber der Weg, den du angegeben hast, interessiert mch auch

Bezug
                        
Bezug
Abstand Punkt-Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Sa 20.10.2007
Autor: koepper

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,

der "allgemeine Punkt" ist hier

$B_{\lambda}(1-3 \lambda \mid 2+2 \lambda \mid 3+4 \lambda)$

Den kannst du einfach aus der Geradengleichung koordinatenweise ablesen.

Für jedes $ \lambda \in \IR $ ist $B_\lambda$ dann ein Punkt der Geraden.

Nun bilde die Schar aller Vektoren von Punkt A zu Punkten der Geraden.
Dazu subtrahierst du einfach:

$\vec{0B_\lambda} - \vec{0A} = \vektor{ 3-3\lambda \\ -1+2\lambda \\ 8+4\lambda)$

Nun müssen wir $\lambda$ so bestimmen, daß dieser Vektor von A zur Geraden orthogonal zur Geraden wird,
denn nur dann ist er der kürzeste von allen und zeigt auf den Lotfusspunkt, also

$\vektor{ 3-3\lambda \\ -1+2\lambda \\ 8+4\lambda} * \vektor{ -3 \\ 2 \\ 4} = 0$

$\Leftrightarrow -3 * (3-3\lambda) +2 * (-1+2\lambda) + 4 * (8+4\lambda) = 0$

$\Leftrightarrow 21  + 29 \lambda = 0 $

$\Leftrightarrow \lambda = -\frac{21}{29} $

Dieses $\lambda$ setzt du nun in die ursprüngliche Geradengleichung ein und bekommst den Lotfusspunkt.
Der Abstand vom LFP zu A ist dann die gesuchte Distanz.

Gruß
Will


Bezug
                                
Bezug
Abstand Punkt-Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Sa 20.10.2007
Autor: Owen

Aufgabe
s. oben

gut, das habe ich soweit verstanden. Nun würde ich noch gerne den Fehler aus meiner Rechnung mit der Vektorprojektion wissen. Da würde mich sehr freuen.

Bezug
                                        
Bezug
Abstand Punkt-Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Sa 20.10.2007
Autor: koepper

Hallo,

Für den Abstand gilt dann: $ [mm] d=\vmat{ \overrightarrow{CA}+\vec{P}\vec{u} (\overrightarrow{CA}) } [/mm] $  mit $ [mm] \overrightarrow{CA}=\overrightarrow{OA}-\overrightarrow{OC}=\vektor{-2 \\ 3 \\ -5}-\vektor{1 \\ 2 \\ 3}=\vektor{-3 \\ 1 \\ -8} [/mm] $

$ [mm] \vec{P}\vec{u}(\overrightarrow{CA}) [/mm] $
$ [mm] =P\vec{u}(\overrightarrow{CA})\cdot{}\vec{eu} [/mm] $
$ [mm] =(\overrightarrow{CA}\cdot{}\vec{eu})\cdot{}\vec{eu} [/mm] $
$ [mm] =(\overrightarrow{CA}\cdot{}\bruch{\vec{u}}{\vmat{ \vec{u}}})\cdot{}\bruch{\vec{u}}{\vmat{ \vec{u}}} [/mm] $

$ [mm] =\bruch{1}{(\vec{u})²}\cdot{}(\overrightarrow{CA}\cdot{}\vec{u})\cdot{}\vec{u} [/mm] $
$ [mm] =\bruch{1}{29}\cdot{}(9+2-32)\cdot{}\vektor{-3 \\ 2 \\ 4} [/mm] $
$ [mm] d=\vmat{\vektor{-3 \\ 1 \\ -8}-\bruch{21}{29}\cdot{}\vektor{-3 \\ 2 \\ 4}} [/mm] $
=10.94

Aber eigentlich müsste doch 7,67 herauskommen. Wo ist der Fehler?

Es muß

$ [mm] d=\vmat{\vektor{-3 \\ 1 \\ -8} + \bruch{21}{29}\cdot{}\vektor{-3 \\ 2 \\ 4}} [/mm] $

heißen.

Gruß
Will

Bezug
                                                
Bezug
Abstand Punkt-Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Sa 20.10.2007
Autor: Owen

Oh man, dass war aber ein unnötiger Fehler. Jedenfalls weiß ich jetzt Bescheid. Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de