www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstand Punkt Gerade Lotpunkt
Abstand Punkt Gerade Lotpunkt < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt Gerade Lotpunkt: Formelkorrektur
Status: (Frage) beantwortet Status 
Datum: 12:43 So 06.07.2014
Autor: Wertzu

Aufgabe
Berechnen Sie den minimalen Abstand vom Punkt zur Geraden und den Lotpunkt.

rp = [mm] \vektor{-1 \\ 3}; [/mm] r = [mm] \vektor{1 \\ 1} [/mm] + [mm] \lambda [/mm] * [mm] \vektor{-4 \\ 3} [/mm]

Ich habe die Parameterform erstmal in die Hessesche Normalform gebracht.

r * [mm] \vektor{\bruch{3}{5} \\ \bruch{4}{5}} [/mm] = [mm] \bruch{7}{5} [/mm]

Das hatte ich mir sogar nochmal gezeichnet und nachgemssen. Der Vektor hat die Länge 1 und der Abstand beträgt 1,4.

Nun habe ich den Abstand errechnet.

a = |rp * n - p| = [mm] \bruch{2}{7} [/mm]

Das stimmt mit der Lösung des Lehrers überein.

Nun wollte ich den Lotpunkt berechnen.

a = rp + (rp * n - p) * n

Diese Formel steht so in den Unterlagen des Lehrers.

Ich komm damit aber nicht zum richtigen Ergebnis.

Wenn ich jedoch aus (rp * n - p) > (p - rp * n) schreibe, kommt das richtige Ergebnis raus.

Da ich bei der Länge den Betrag bilde, ist dort das Vorzeichen egal, aber Beim Lot nicht.

Meine Frage ist nun: Ist die Formel falsch?

        
Bezug
Abstand Punkt Gerade Lotpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 So 06.07.2014
Autor: Diophant

Hallo,

> Berechnen Sie den minimalen Abstand vom Punkt zur Geraden
> und den Lotpunkt.

>

> rp = [mm]\vektor{-1 \\ 3};[/mm] r = [mm]\vektor{1 \\ 1}[/mm] + [mm]\lambda[/mm] *
> [mm]\vektor{-4 \\ 3}[/mm]
> Ich habe die Parameterform erstmal in die
> Hessesche Normalform gebracht.

>

> r * [mm]\vektor{\bruch{3}{5} \\ \bruch{4}{5}}[/mm] = [mm]\bruch{7}{5}[/mm]

Soweit stimmt das noch.

>

> Das hatte ich mir sogar nochmal gezeichnet und nachgemssen.
> Der Vektor hat die Länge 1 und der Abstand beträgt 1,4.

Falsch (der Abstand).

>

> Nun habe ich den Abstand errechnet.

>

> a = |rp * n - p| = [mm]\bruch{2}{7}[/mm]

>

> Das stimmt mit der Lösung des Lehrers überein.

>

Ebenso falsch. Was soll die unsinnige Multiplikation ohne Klammern? Das kapiert kein Mensch, was da gemeint sein soll.

> Nun wollte ich den Lotpunkt berechnen.

>

> a = rp + (rp * n - p) * n

>

> Diese Formel steht so in den Unterlagen des Lehrers.

>

Nein, die Formel steht so garantiert nicht in den Unterlagen deines Lehrers. So lange du nicht in der Lage bist, wenigstens die notwendige Klammernsetzung zu beachten, so lange ist es völlig sinnlos, sich mit deinem Anliegen zu beschäftigen. Man kann nicht mehr sagen, als dass beide von dir angegebenen Abstände falsch sind, und dass man im [mm] \IR^2 [/mm] zur Berechnung eines Lotfußpunktes sicherlich keine Formel benötigt, wenn man ein wenig verstanden hat, was man da eigentlich tut.

Der richtige Abstand ist übrigens

[mm] d=\bruch{2}{5}=0.4 [/mm] ...


Gruß, Diophant

Bezug
                
Bezug
Abstand Punkt Gerade Lotpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 So 06.07.2014
Autor: Wertzu


> Hallo,
>  
> > Berechnen Sie den minimalen Abstand vom Punkt zur Geraden
>  > und den Lotpunkt.

>  >
>  > rp = [mm]\vektor{-1 \\ 3};[/mm] r = [mm]\vektor{1 \\ 1}[/mm] + [mm]\lambda[/mm] *

>  > [mm]\vektor{-4 \\ 3}[/mm]

>  > Ich habe die Parameterform erstmal

> in die
>  > Hessesche Normalform gebracht.

>  >
>  > r * [mm]\vektor{\bruch{3}{5} \\ \bruch{4}{5}}[/mm] =

> [mm]\bruch{7}{5}[/mm]
>  
> Soweit stimmt das noch.
>  
> >
>  > Das hatte ich mir sogar nochmal gezeichnet und

> nachgemssen.
>  > Der Vektor hat die Länge 1 und der Abstand beträgt

> 1,4.
>  
> Falsch (der Abstand).

^^ Ich glaube hier liegt ein Missverständniss vor.
Dieser Abstand hier bezieht sich auf den des Ursprung von der Geraden.

Hiermit wollte ich nur zeigen das meine Umwandlung von der Parameterform zu Hessischen Normalforam richtig ist.


> >
>  > Nun habe ich den Abstand errechnet.

>  >
>  > a = |rp * n - p| = [mm]\bruch{2}{7}[/mm]

>  >
>  > Das stimmt mit der Lösung des Lehrers überein.

>  >
>  
> Ebenso falsch. Was soll die unsinnige Multiplikation ohne
> Klammern? Das kapiert kein Mensch, was da gemeint sein
> soll.

Punkt vor Strichrechnung? rp und n sind hier Vektoren, p ist ein Skalar.

> > Nun wollte ich den Lotpunkt berechnen.
>  >
>  > a = rp + (rp * n - p) * n

>  >
>  > Diese Formel steht so in den Unterlagen des Lehrers.

>  >
>  
> Nein, die Formel steht so garantiert nicht in den
> Unterlagen deines Lehrers. So lange du nicht in der Lage
> bist, wenigstens die notwendige Klammernsetzung zu
> beachten, so lange ist es völlig sinnlos, sich mit deinem
> Anliegen zu beschäftigen. Man kann nicht mehr sagen, als
> dass beide von dir angegebenen Abstände falsch sind, und
> dass man im [mm]\IR^2[/mm] zur Berechnung eines Lotfußpunktes
> sicherlich keine Formel benötigt, wenn man ein wenig
> verstanden hat, was man da eigentlich tut.
>  
> Der richtige Abstand ist übrigens
>  
> [mm]d=\bruch{2}{5}=0.4[/mm] ...
>  
>
> Gruß, Diophant

Tut mir Leid wenn ich hier die Gemüter erhitzt habe, es gibt keinen Grund angreifend zu werden und irgendwelche destruktiven Behauptungen aufzustellen.

Die Formel steht so in den Unterlagen, ich habe sie gerade vor mir aufgeschlagen.

Gruß Wertzu

Bezug
                        
Bezug
Abstand Punkt Gerade Lotpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 So 06.07.2014
Autor: Diophant

Hallo,

> > > Der Vektor hat die Länge 1 und der Abstand beträgt
> > 1,4.
> >
> > Falsch (der Abstand).

>

> ^^ Ich glaube hier liegt ein Missverständniss vor.
> Dieser Abstand hier bezieht sich auf den des Ursprung von
> der Geraden.

>

Dann musst du das halt das nächste Mal dazuschreiben.

> Hiermit wollte ich nur zeigen das meine Umwandlung von der
> Parameterform zu Hessischen Normalforam richtig ist.

>

Das heißt Hessesche Normalenform nach dem deutschen Mathematiker []Otto Hesse.

>

> > >
> > > Nun habe ich den Abstand errechnet.
> > >
> > > a = |rp * n - p| = [mm]\bruch{2}{7}[/mm]
> > >
> > > Das stimmt mit der Lösung des Lehrers überein.
> > >
> >
> > Ebenso falsch. Was soll die unsinnige Multiplikation ohne
> > Klammern? Das kapiert kein Mensch, was da gemeint sein
> > soll.

>

> Punkt vor Strichrechnung? rp und n sind hier Vektoren, p
> ist ein Skalar.

Auch hier: schreibe es mit dem Formeleditor so auf, das man es verstehen kann.

> > > Nun wollte ich den Lotpunkt berechnen.
> > >
> > > a = rp + (rp * n - p) * n
> > >
> > > Diese Formel steht so in den Unterlagen des Lehrers.
> > >
> >
> > Nein, die Formel steht so garantiert nicht in den
> > Unterlagen deines Lehrers. So lange du nicht in der Lage
> > bist, wenigstens die notwendige Klammernsetzung zu
> > beachten, so lange ist es völlig sinnlos, sich mit deinem
> > Anliegen zu beschäftigen. Man kann nicht mehr sagen, als
> > dass beide von dir angegebenen Abstände falsch sind, und
> > dass man im [mm]\IR^2[/mm] zur Berechnung eines Lotfußpunktes
> > sicherlich keine Formel benötigt, wenn man ein wenig
> > verstanden hat, was man da eigentlich tut.
> >
> > Der richtige Abstand ist übrigens
> >
> > [mm]d=\bruch{2}{5}=0.4[/mm] ...
> >
> >
> > Gruß, Diophant

>

> Tut mir Leid wenn ich hier die Gemüter erhitzt habe, es
> gibt keinen Grund angreifend zu werden und irgendwelche
> destruktiven Behauptungen aufzustellen.

>

Sonst geht es aber schon noch? Trage deine Anliegen in einer adäquaten Form vor, dann bekommst du auch konstruktive Antworten...

Gruß, Diophant

Bezug
                                
Bezug
Abstand Punkt Gerade Lotpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 So 06.07.2014
Autor: Wertzu


> Hallo,
>  
> > > > Der Vektor hat die Länge 1 und der Abstand beträgt
>  > > 1,4.

>  > >

>  > > Falsch (der Abstand).

>  >
>  > ^^ Ich glaube hier liegt ein Missverständniss vor.

>  > Dieser Abstand hier bezieht sich auf den des Ursprung

> von
>  > der Geraden.

>  >
>  
> Dann musst du das halt das nächste Mal dazuschreiben.
>  
> > Hiermit wollte ich nur zeigen das meine Umwandlung von der
>  > Parameterform zu Hessischen Normalforam richtig ist.

>  >
>  
> Das heißt <i>Hessesche Normalneform</b> nach dem deutschen
> Mathematiker []Otto Hesse.

Jetzt halten Sie sich aber mit Nebensächlichkeiten auf!

> >
>  > > >

>  > > > Nun habe ich den Abstand errechnet.

>  > > >

>  > > > a = |rp * n - p| = [mm]\bruch{2}{7}[/mm]

>  > > >

>  > > > Das stimmt mit der Lösung des Lehrers überein.

>  > > >

>  > >

>  > > Ebenso falsch. Was soll die unsinnige Multiplikation

> ohne
>  > > Klammern? Das kapiert kein Mensch, was da gemeint

> sein
>  > > soll.

>  >
>  > Punkt vor Strichrechnung? rp und n sind hier Vektoren,

> p
>  > ist ein Skalar.

>  
> Auch hier: schreibe es mit dem Formeleditor so auf, das man
> es verstehen kann.

Es tut mir leid, wenn Sie das nicht verstehen.

> > > > Nun wollte ich den Lotpunkt berechnen.
>  > > >

>  > > > a = rp + (rp * n - p) * n

>  > > >

>  > > > Diese Formel steht so in den Unterlagen des

> Lehrers.
>  > > >

>  > >

>  > > Nein, die Formel steht so garantiert nicht in den

>  > > Unterlagen deines Lehrers. So lange du nicht in der

> Lage
>  > > bist, wenigstens die notwendige Klammernsetzung zu

>  > > beachten, so lange ist es völlig sinnlos, sich mit

> deinem
>  > > Anliegen zu beschäftigen. Man kann nicht mehr sagen,

> als
>  > > dass beide von dir angegebenen Abstände falsch sind,

> und
>  > > dass man im [mm]\IR^2[/mm] zur Berechnung eines Lotfußpunktes

>  > > sicherlich keine Formel benötigt, wenn man ein wenig

>  > > verstanden hat, was man da eigentlich tut.

>  > >

>  > > Der richtige Abstand ist übrigens

>  > >

>  > > [mm]d=\bruch{2}{5}=0.4[/mm] ...

>  > >

>  > >

>  > > Gruß, Diophant

>  >
>  > Tut mir Leid wenn ich hier die Gemüter erhitzt habe,

> es
>  > gibt keinen Grund angreifend zu werden und irgendwelche

>  > destruktiven Behauptungen aufzustellen.

>  >
>  
> Sonst geht es aber schon noch?

Sie haben angefangen mir Dinge zu unterstellen. Ich glaube nicht, dass dies der gewünschte Umgang in diesem Forum ist.

> Trage deine Anliegen in
> einer adäquaten Form vor, dann bekommst du auch
> konstruktive Antworten...
>  
> Gruß, Diophant

Wenn Sie mir nicht helfen wollen, dann hören Sie bitte auf hier was zu posten.

Gruß Wertzu

Bezug
        
Bezug
Abstand Punkt Gerade Lotpunkt: Ohne Formelwissen gehts auch
Status: (Antwort) fertig Status 
Datum: 15:46 So 06.07.2014
Autor: M.Rex

Hallo


> Berechnen Sie den minimalen Abstand vom Punkt zur Geraden
> und den Lotpunkt.

>

> rp = [mm]\vektor{-1 \\ 3};[/mm] r = [mm]\vektor{1 \\ 1}[/mm] + [mm]\lambda[/mm] *
> [mm]\vektor{-4 \\ 3}[/mm]
> Ich habe die Parameterform erstmal in die
> Hessesche Normalform gebracht.

>

> r * [mm]\vektor{\bruch{3}{5} \\ \bruch{4}{5}}[/mm] = [mm]\bruch{7}{5}[/mm]

>

> Das hatte ich mir sogar nochmal gezeichnet und nachgemssen.
> Der Vektor hat die Länge 1 und der Abstand beträgt 1,4.

>

> Nun habe ich den Abstand errechnet.

>

> a = |rp * n - p| = [mm]\bruch{2}{7}[/mm]

Wovon?

>

> Das stimmt mit der Lösung des Lehrers überein.

>

> Nun wollte ich den Lotpunkt berechnen.

>

> a = rp + (rp * n - p) * n

>

> Diese Formel steht so in den Unterlagen des Lehrers.

Das kann ich mir kaum vorstellen, kannst du evtl mal klammern setzen, was gemeint ist.
Die Formel interpretiere ich als
[mm] (\underbrace{\vec{r}_{p}\cdot\vec{n}}_{Skalar}-\vec{p})\cdot\vec{n} [/mm]

Und von einem Skalar kannst du keinen Vektor subtrahiern.

>

> Ich komm damit aber nicht zum richtigen Ergebnis.

>

> Wenn ich jedoch aus (rp * n - p) > (p - rp * n) schreibe,
> kommt das richtige Ergebnis raus.

>

> Da ich bei der Länge den Betrag bilde, ist dort das
> Vorzeichen egal, aber Beim Lot nicht.

>

> Meine Frage ist nun: Ist die Formel falsch?

So, wie sie da steht, definitiv.

Es geht aber auch ohne Formeln, nur durch geometrisches Überlegen:

Du hast die Gerade [mm] g:\vec{x}={1\choose1}+\lambda\cdot{-4\choose3} [/mm] und den Punkt P(-1;3), dessen Abstand zu g du berechnen sollst

Zum Richtungsvektor senkrecht steht der Vektor [mm] \vec{n}={3\choose4} [/mm]


Dann bestimme eine Hilfsgerade h, die durch P geht, und senkreht auf g steht, das ist hier:
[mm] h:\vec{x}=\vec{p}+\mu\cdot\vec{n}={-1\choose3}+\mu\cdot{3\choose4} [/mm]

Der Schnittpunkt von g und h ist der Lotfusspunkt L, dier

[mm] L=\left(\frac{-31}{25};\frac{67}{25}\right) [/mm]

Das passt dann auch noch mit der Skizze:
[Dateianhang nicht öffentlich]

Bestimme nun noch die Länge des Vektors [mm] \overrightarrow{PL} [/mm]

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Abstand Punkt Gerade Lotpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 So 06.07.2014
Autor: Wertzu

Vielen Dank für die Antwort,

> Hallo
>  
>
> > Berechnen Sie den minimalen Abstand vom Punkt zur Geraden
>  > und den Lotpunkt.

>  >
>  > rp = [mm]\vektor{-1 \\ 3};[/mm] r = [mm]\vektor{1 \\ 1}[/mm] + [mm]\lambda[/mm] *

>  > [mm]\vektor{-4 \\ 3}[/mm]

>  > Ich habe die Parameterform erstmal

> in die
>  > Hessesche Normalform gebracht.

>  >
>  > r * [mm]\vektor{\bruch{3}{5} \\ \bruch{4}{5}}[/mm] =

> [mm]\bruch{7}{5}[/mm]
>  >
>  > Das hatte ich mir sogar nochmal gezeichnet und

> nachgemssen.
>  > Der Vektor hat die Länge 1 und der Abstand beträgt

> 1,4.
>  >
>  > Nun habe ich den Abstand errechnet.

>  >
>  > a = |rp * n - p| = [mm]\bruch{2}{7}[/mm]

>  
> Wovon?

Das ist der Abstand von dem Punkt und der Geraden.

> >
>  > Das stimmt mit der Lösung des Lehrers überein.

>  >
>  > Nun wollte ich den Lotpunkt berechnen.

>  >
>  > a = rp + (rp * n - p) * n

>  >
>  > Diese Formel steht so in den Unterlagen des Lehrers.

>  
> Das kann ich mir kaum vorstellen, kannst du evtl mal
> klammern setzen, was gemeint ist.
>  Die Formel interpretiere ich als
>  
> [mm](\underbrace{\vec{r}_{p}\cdot\vec{n}}_{Skalar}-\vec{p})\cdot\vec{n}[/mm]
>  
> Und von einem Skalar kannst du keinen Vektor subtrahiern.

Ok, ich werde die Formel nun nochmal genau hinschreiben.

[mm] \vec{r}_{L} [/mm] = [mm] \vec{r}_{p} [/mm] + [mm] (\vec{r}_{p} [/mm] * [mm] \vec{n} [/mm] - p) * [mm] \vec{n} [/mm]

[mm] \vec{r}_{L} [/mm] = Vektor des Lotpunktes
[mm] \vec{r}_{p} [/mm] = Vektor des Punktes
[mm] \vec{n} [/mm] = Normalenvektor der Länge 1
p = Skalar, welches den Abstand des Ursprunges von der Gerade angibt

> >
>  > Ich komm damit aber nicht zum richtigen Ergebnis.

>  >
>  > Wenn ich jedoch aus (rp * n - p) > (p - rp * n)

> schreibe,
>  > kommt das richtige Ergebnis raus.

>  >
>  > Da ich bei der Länge den Betrag bilde, ist dort das

>  > Vorzeichen egal, aber Beim Lot nicht.

>  >
>  > Meine Frage ist nun: Ist die Formel falsch?

>  
> So, wie sie da steht, definitiv.
>  
> Es geht aber auch ohne Formeln, nur durch geometrisches
> Überlegen:
>  
> Du hast die Gerade
> [mm]g:\vec{x}={1\choose1}+\lambda\cdot{-4\choose3}[/mm] und den
> Punkt P(-1;3), dessen Abstand zu g du berechnen sollst
>  
> Zum Richtungsvektor senkrecht steht der Vektor
> [mm]\vec{n}={3\choose4}[/mm]
>  
>
> Dann bestimme eine Hilfsgerade h, die durch P geht, und
> senkreht auf g steht, das ist hier:
>  
> [mm]h:\vec{x}=\vec{p}+\mu\cdot\vec{n}={-1\choose3}+\mu\cdot{3\choose4}[/mm]
>  
> Der Schnittpunkt von g und h ist der Lotfusspunkt L, dier
>  
> [mm]L=\left(\frac{-31}{25};\frac{67}{25}\right)[/mm]
>  
> Das passt dann auch noch mit der Skizze:
>  [Dateianhang nicht öffentlich]
>  
> Bestimme nun noch die Länge des Vektors
> [mm]\overrightarrow{PL}[/mm]
>  
> Marius

Diese Überlegung hatte ich auch angestellt und habe den Lot-Vektor, welchen Sie ebenfalls ermittelt haben.

Doch mit der Formel bekomme ich dies halt nur raus, wenn ich das Skalarprodukt mit dem Skalar vertausche.

  [mm] \vec{r}_{L} [/mm] = [mm] \vec{r}_{p} [/mm] + [mm] (\vec{r}_{p} [/mm] * [mm] \vec{n} [/mm] - p) * [mm] \vec{n} [/mm]
[mm] \Rightarrow \vec{r}_{L} [/mm] = [mm] \vec{r}_{p} [/mm] + (p - [mm] \vec{r}_{p} [/mm] * [mm] \vec{n}) [/mm] * [mm] \vec{n} [/mm]


Gruß Wertzu

Bezug
                        
Bezug
Abstand Punkt Gerade Lotpunkt: Richtung des Normalenvektors
Status: (Antwort) fertig Status 
Datum: 16:46 So 06.07.2014
Autor: M.Rex

Hallo

Bei der Formel, die du verwendest, ist es elementar wichtig, darauf zu achten, ob der Normalenvektor der Gerade g auf der zum Punkt P hingewandten Seite oder auf der anderen Seite der Geraden g steht.

Daher können, je nach Wahl des Normalenvektors beide Formeln zum richtigen Ergebnis führen.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de