www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstand und Fußpunkt
Abstand und Fußpunkt < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand und Fußpunkt: Orthogonale von P auf g
Status: (Frage) beantwortet Status 
Datum: 10:12 Fr 09.12.2011
Autor: wolfgangmax

Aufgabe
Gegeben sind die 3 Punkte A(9,2,2); B(3,8,-5) und C(3,-5,2). Vom Punkt C soll die Orthogonale auf die Strecke AB sowie der Fußpunkt F bestimmt werden. Schließlich ist die Fläche des Dreiuecks ABC zu berechnen.


Die Geradengleichung AB ist ja schnell bestimmt:
x=A+r(AB)
Nun denke ich: Wenn ich auch die Geradengleichung der Orthogonalen bestimmen könnte, könnte ich ja beide Geradengleichungen gleich setzen und würde so den Fußpunkt F bestimmen.
Das will nicht klappen, denn die Geradengleichung der Orthogonalen enthält bei mir die Koordinaten x1, x2 und x3 des Fußpunktes F. Und genau die will ich ja berechnen.
Ich weiß leider nicht weiter!
Danke für eure Hilfe
MfG


        
Bezug
Abstand und Fußpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Fr 09.12.2011
Autor: angela.h.b.


> Gegeben sind die 3 Punkte A(9,2,2); B(3,8,-5) und
> C(3,-5,2). Vom Punkt C soll die Orthogonale auf die Strecke
> AB sowie der Fußpunkt F bestimmt werden. Schließlich ist
> die Fläche des Dreiuecks ABC zu berechnen.
>  
> Die Geradengleichung AB ist ja schnell bestimmt:
>  x=A+r(AB)
>  Nun denke ich: Wenn ich auch die Geradengleichung der
> Orthogonalen bestimmen könnte, könnte ich ja beide
> Geradengleichungen gleich setzen und würde so den
> Fußpunkt F bestimmen.
> Das will nicht klappen,

Hallo,

schön wäre es halt, wenn Du den Richtungsvektor der Orthogonalen hättest.
Den zu finden ist aber nicht ganz leicht, denn es gibt ja ganz viele Vektoren, die senkrecht zu [mm] \overrightarrow{AB} [/mm] sind.

Mögliche Vorgehensweise: nimm die Ebene, die senkrecht zur Geraden AB ist und durch den Punkt C geht.
Bringe sie zum Schnitt mit Deiner Geraden. Du bekommst den Fußpunkt F, und dann ist das Aufstellen der Gleichung der Orthogonalen keine kunst mehr.

Eine andere Möglichkeit: überlege Dir, daß der Richtungsvektor der gesuchten Geraden nicht nur orthogonal zu AB ist, sondern auch in der von [mm] \overrightarrow{AB} [/mm] und [mm] \overrightarrow{AC} [/mm] aufgespannten Ebene liegt...

Gruß v. Angela


> Orthogonalen enthält bei mir die Koordinaten x1, x2 und x3
> des Fußpunktes F. Und genau die will ich ja berechnen.
>  Ich weiß leider nicht weiter!
>  Danke für eure Hilfe
>  MfG
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de