www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstand von 2 Punkten
Abstand von 2 Punkten < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand von 2 Punkten: Formel, Idee
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 23.04.2012
Autor: xedir

Aufgabe
Hallo,
es geht mir hier darum, einer Formel oder einen Weg zu finden, wie ich die Koordinaten eines Punktes bestimmen kann, der auf einer Geraden liegt deren Gleichung ich kenne und der x LE von einem Punkt der Geraden entfernt ist der ebenfalls bekannt ist.


Als bsp. habe ich:
Die Gerade x = [mm] \vektor{3 \\ 2 \\4} [/mm]  + r [mm] \vektor{1 \\ 1 \\ 1} [/mm]
Schneidet den Punkt [mm] \vektor{1 \\ 0 \\ 2} [/mm] und einen Punkt der [mm] 8*\wurzel{3} [/mm] von [mm] \vektor{1 \\ 0 \\ 2} [/mm] entfern ist. Als ergebnis müssten die Punkte [mm] \vektor{-7 \\-8\\ -6} [/mm] und [mm] \vektor{9 \\ 8 \\ 10} [/mm] kommen, bei dem Lösungsweg stehe ich nur total auf Holzweg


Danke im voraus.

        
Bezug
Abstand von 2 Punkten: Richtungsvektor
Status: (Antwort) fertig Status 
Datum: 19:41 Mo 23.04.2012
Autor: Infinit

Hallo xedir,
was Dir hier Schwierigkeiten bereitet, das ist der Richtungsvektor Deiner Geraden, also
[mm] \vektor{1 \\ 1 \\ 1} [/mm]
Der gibt die Richtung an, hat aber nicht eine Länge von 1, sondern er ist etwas größer, nämlich nach dem alten Phytagoras hat er die Länge
[mm] \wurzel{1^2 + 1^2 + 1^2} = \wurzel{3} [/mm]
Wenn Du also Deine Laufvariable r um eine Einheit von 1 erhöhst, beispielsweise von 4 auf 5, so bist Du auf der Geraden nicht um eine Strecke von 1, sondern um eine Strecke von [mm] \wurzel{3} [/mm] vorangegangen.
Da es bei diesem Richtungsvektor nicht auf seine Länge ankommt, sondern eben um die Richtung, in die er zeigt, kannst Du ihn auch so schreiben, dass er eine Länge von 1 besitzt. Dazu musst Du einfach alle seine Komponenten durch [mm] \wurzel{3} [/mm] dividieren, schreibe ihn also als
[mm] \vektor{\bruch{1}{\wurzel{3}} \\ \bruch{1}{\wurzel{3}} \\ \bruch{1}{\wurzel{3}}} [/mm]
Damit bekommst Du für Deine Gleichung den Ausdruck, mit dem neuen Punkt (1/0/2),
[mm] x = \vektor{1 \\ 0 \\ 2} + k \vektor{\bruch{1}{\wurzel{3}} \\ \bruch{1}{\wurzel{3}} \\ \bruch{1}{\wurzel{3}}} [/mm].
Jetzt setze mal Deinen Entfernungswert von [mm] 8 \cdot \wurzel{3} [/mm] ein, und Du siehst, bei welchen Koordinaten Du landest.
Viele Grüße,
Infinit


Bezug
                
Bezug
Abstand von 2 Punkten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 Mo 23.04.2012
Autor: xedir

Hammergut, danke dir werd ich direkt mal umsetzen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de