www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstand von Geraden
Abstand von Geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand von Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 So 17.12.2006
Autor: DriftinHeart

Aufgabe
20 b) Berechnen Sie den Abstand der Geraden g und h.

b) g:  [mm] \vec{x} [/mm] = [mm] \vektor{ 3 \\ 2 \\ 5 } [/mm] + t [mm] \vektor{-3 \\ 1 \\ 1} [/mm]

21 b) Berechnen Sie den Abstand der Geraden g von den drei Koordinatenachsen.

g: [mm] \vec{x} [/mm] = [mm] \vektor{ -2 \\ 4 \\ -4 } [/mm] + t [mm] \vektor{1 \\ 1 \\ 11} [/mm]  

ich hab keene ahnung wie das geht... kann mir jemand das mal idiotensicher erklären oder zumindest so logisch, dass es die meisten verstehen? *lol*

danke,
katrin

        
Bezug
Abstand von Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 17.12.2006
Autor: DesterX

Hi Katrin!

Was der Abstand zwischen 2 Geraden sein soll, ist natürlich zunächst einmal eine Frage der Definition. Zudem sollte dir die Lage der Geraden bekannt sein. Wenn du dir 2 Punkte zweier z.B. paralleler Geraden vorstellt, und diese verbindest, kannst du die Länge des "Verbindungsvektor" berechnen - das wird jedoch in der Regel nicht der geringste Abstand der Geraden sein (Klar, oder?). Jedoch gehe ich davon aus, dass hier nach einem solchen Abstand gefragt ist?

Zu der ersten Aufgabe kann ich dir leider nichts sagen, da du die Gerade h nicht angegeben hast.

Zur zweiten Aufgabe:
Nehmen wir mal die "Geradengleichung" der [mm] x_1-Achse: [/mm]
h : [mm] \overrightarrow{x}= [/mm] s [mm] \vektor{1 \\ 0 \\ 0} [/mm]
Zunächst also müssen wir uns Gedanken zur Lagebeziehung von g und h machen. Du wirst schließlich feststellen, dass die Geraden windschief sind.

Die Idee ist nun, einfach 2 parallele Ebenen zu konstrurieren der Form:
[mm] \varepsilon_1: \overrightarrow{x} [/mm] = [mm] \vektor{ -2 \\ 4 \\ -4 } [/mm]  + t [mm] \vektor{1 \\ 1 \\ 11} [/mm] + s [mm] \vektor{1 \\ 0 \\ 0} [/mm] und
[mm] \varepsilon_2: \overrightarrow{x} [/mm] = t [mm] \vektor{1 \\ 1 \\ 11} [/mm] + s [mm] \vektor{1 \\ 0 \\ 0} [/mm]

Hier gilt nun offenbar: g [mm] \subset \varepsilon_1 [/mm] und h [mm] \subset \varepsilon_2 [/mm] (wenn dir das nicht klar ist, rechne es nochmal aus und du wirst schnell sehen, dass das passt!)
Nun kannst du also einfach den Abstand zwischen den parallelen Ebenen berechnen und bist fertig! Wie man das anstellt, habt ihr doch sicher schon gelernt, oder?

Bei weiteren Fragen einfach nochmal melden

Gruß,
Dester

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de