www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Abstand zweier Ebenen
Abstand zweier Ebenen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand zweier Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Di 27.01.2009
Autor: dicentra

Aufgabe
Bestimme den Abstand der parallelen Ebenen [mm] E_1 [/mm] und [mm] E_2. [/mm]

[mm] E_1=\{\vec{x} | \vektor{1\\1\\0}\cdot{}(\vec{x}-\vektor{0\\0\\2})= 0 \} [/mm]

[mm] E_2=\{\vec{x} | \vektor{1\\1\\0}\cdot{}(\vec{x}-\vektor{2\\2\\0})= 0 \} [/mm]

hallo,

erst mal folgende fragen:

* da der normalenvektor gleich ist, weiß ich, dass die ebenen parallel sind?
* da der faktor anders ist, liegen sie unterschiedlich weit vom ursprung entfernt?
* und es kann sich nicht um die selbe ebene handeln?
* es würde sich um die selben ebenen handeln, wenn [mm] \vec{a} [/mm] auch gleich wäre?

mein ergebnis wäre:

[mm]d=\bruch{\vec{n}(\vec{a_1}-\vec{a_2})}{|\vec{x}|}=\bruch{-4}{\wurzel{2}}=-2,828[/mm]

gruß, dic

        
Bezug
Abstand zweier Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Di 27.01.2009
Autor: MathePower

Hallo dicentra,

> Bestimme den Abstand der parallelen Ebenen [mm]E_1[/mm] und [mm]E_2.[/mm]
>  
> [mm]E_1=\{\vec{x} | \vektor{1\\1\\0}\cdot{}(\vec{x}-\vektor{0\\0\\2})= 0 \}[/mm]
>  
> [mm]E_2=\{\vec{x} | \vektor{1\\1\\0}\cdot{}(\vec{x}-\vektor{2\\2\\0})= 0 \}[/mm]
>  
> hallo,
>
> erst mal folgende fragen:
>  
> * da der normalenvektor gleich ist, weiß ich, dass die
> ebenen parallel sind?


Die Normalenvektor müssen Vielfache voneinander sein.


>  * da der faktor anders ist, liegen sie unterschiedlich
> weit vom ursprung entfernt?


Was ist mit "Faktor" gemeint?


>  * und es kann sich nicht um die selbe ebene handeln?


Siehe nächste Frage.

>  * es würde sich um die selben ebenen handeln, wenn [mm]\vec{a}[/mm]
> auch gleich wäre?


Wenn der Stützvektor der einen Ebene zugleich ein Punkt der anderen Ebene ist,
dann sind sie gleich.

>  
> mein ergebnis wäre:
>  
> [mm]d=\bruch{\vec{n}(\vec{a_1}-\vec{a_2})}{|\vec{x}|}=\bruch{-4}{\wurzel{2}}=-2,828[/mm]


Der Betrag von stimmt. [ok].


>  
> gruß, dic


Gruß
MathePower

Bezug
                
Bezug
Abstand zweier Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Di 27.01.2009
Autor: dicentra


> > * da der normalenvektor gleich ist, weiß ich, dass die ebenen parallel sind?
>
>
> Die Normalenvektor müssen Vielfache voneinander sein.
>  
>
> >  * da der faktor anders ist, liegen sie unterschiedlich

> > weit vom ursprung entfernt?
>  
>
> Was ist mit "Faktor" gemeint?

[mm] (\vec{x}-\vektor{0\\0\\2}) [/mm]

>  
>
> >  * und es kann sich nicht um die selbe ebene handeln?

>  
>
> Siehe nächste Frage.
>  
> >  * es würde sich um die selben ebenen handeln, wenn [mm]\vec{a}[/mm] auch gleich wäre?

>  
>
> Wenn der Stützvektor der einen Ebene zugleich ein Punkt der anderen Ebene ist, dann sind sie gleich.

[mm] \vec{n}(\vec{a_1}-\vec{a_2}) [/mm] wenn hier 0 rauskäme, handelte es sich um die selbe ebene?




Bezug
                        
Bezug
Abstand zweier Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Di 27.01.2009
Autor: MathePower

Hallo dicentra,

> > > * da der normalenvektor gleich ist, weiß ich, dass die
> ebenen parallel sind?
>  >

> >
> > Die Normalenvektor müssen Vielfache voneinander sein.
>  >  
> >
> > >  * da der faktor anders ist, liegen sie unterschiedlich

> > > weit vom ursprung entfernt?
>  >  
> >
> > Was ist mit "Faktor" gemeint?
>  
> [mm](\vec{x}-\vektor{0\\0\\2})[/mm]
>  
> >  

> >
> > >  * und es kann sich nicht um die selbe ebene handeln?

>  >  
> >
> > Siehe nächste Frage.
>  >  
> > >  * es würde sich um die selben ebenen handeln, wenn [mm]\vec{a}[/mm]

> auch gleich wäre?
>  >  
> >
> > Wenn der Stützvektor der einen Ebene zugleich ein Punkt der
> anderen Ebene ist, dann sind sie gleich.
>  
> [mm]\vec{n}(\vec{a_1}-\vec{a_2})[/mm] wenn hier 0 rauskäme, handelte
> es sich um die selbe ebene?
>  
>
>  

Aber ja.


Gruß
MathePower

Bezug
                                
Bezug
Abstand zweier Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Di 27.01.2009
Autor: dicentra

danke. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de