www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstand zweier Geraden
Abstand zweier Geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand zweier Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:03 Mo 21.06.2010
Autor: LadyVal

Aufgabe
Die Geraden mit den Gleichungen

[mm] \vec{x}= \vektor{5 \\ 11 \\ 17} [/mm] + t [mm] \vektor{1 \\ 2 \\ 0} [/mm]

[mm] \vec{x}= \vektor{7 \\ 12 \\ 23} [/mm] + t [mm] \vektor{9 \\ 11 \\ 0} [/mm]

sind beide parallel zu einer Koordinatenebene. Erläutern Sie, wie man den Gleichungen direkt entnehmen kann, dass der Abstand der Geraden 6 beträgt.

Hey!

Mir fehlt bei o.g. Aufgabe völlig der Ansatz.
(Ich verstehe auch schon einmal nicht, ob gemeint ist, dass die eine Gerade zu der einen und die andere Gerade zu einer anderen Koordinatenebene parallel ist oder ob beide Geraden zur gleichen Koordinatenebene parallel sein sollen.)

Über Hilfe wäre ich sehr dankbar!
LG
Val


        
Bezug
Abstand zweier Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Mo 21.06.2010
Autor: angela.h.b.


> Die Geraden mit den Gleichungen
>
> [mm]\vec{x}= \vektor{5 \\ 11 \\ 17}[/mm] + t [mm]\vektor{1 \\ 2 \\ 0}[/mm]
>  
> [mm]\vec{x}= \vektor{7 \\ 12 \\ 23}[/mm] + t [mm]\vektor{9 \\ 11 \\ 0}[/mm]
>  
> sind beide parallel zu einer Koordinatenebene. Erläutern
> Sie, wie man den Gleichungen direkt entnehmen kann, dass
> der Abstand der Geraden 6 beträgt.
>  
> Hey!
>  
> Mir fehlt bei o.g. Aufgabe völlig der Ansatz.
> (Ich verstehe auch schon einmal nicht, ob gemeint ist, dass
> die eine Gerade zu der einen und die andere Gerade zu einer
> anderen Koordinatenebene parallel ist oder ob beide Geraden
> zur gleichen Koordinatenebene parallel sein sollen.)

Hallo,

sie sind zur selben Koordinatenebene parallel.
Um dies zu erkennen, schau die Richtungsvektoren an.
Um welche Koodinatenebene handelt es sich?

Wie weit sind die beiden Stützpunkte von dieser entfernt?

Gruß v. Angela

Bezug
                
Bezug
Abstand zweier Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Mo 21.06.2010
Autor: LadyVal

Puh. Danke!

Okay, habe mir nun Folgendes zusammengereimt:

Da beide Richtungsvektoren bei [mm] x_{3} [/mm] eine 0 stehen haben, erkenne ich daran, dass sie zur selben Koordinatenebene parallel sind, richtig?

Die Koordinatenebene zu der sie paralle sind, ist dann die [mm] x_{1}x_{2}-Ebene. [/mm]
Ebenfalls richtig?

Da die Stützvektoren bei [mm] x_{3} [/mm] einmal 17 und einmal 23 stehen haben, ist dies also mein Abstand.

Richtig schlussgefolgert?

Bezug
                        
Bezug
Abstand zweier Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mo 21.06.2010
Autor: angela.h.b.


> Puh. Danke!
>  
> Okay, habe mir nun Folgendes zusammengereimt:
>
> Da beide Richtungsvektoren bei [mm]x_{3}[/mm] eine 0 stehen haben,
> erkenne ich daran, dass sie zur selben Koordinatenebene
> parallel sind, richtig?
>  
> Die Koordinatenebene zu der sie paralle sind, ist dann die
> [mm]x_{1}x_{2}-Ebene.[/mm]
>  Ebenfalls richtig?


Hallo,

ja.

>  
> Da die Stützvektoren bei [mm]x_{3}[/mm] einmal 17 und einmal 23
> stehen haben, ist dies also mein Abstand.

Damit hast Du die Abstände der beiden Geraden zur xy-Koordinatenebene.

Gruß v. Angela

>  
> Richtig schlussgefolgert?  


Bezug
        
Bezug
Abstand zweier Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Mo 21.06.2010
Autor: LadyVal

Super! Herzlichen Dank!
LG Val

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de