Abstand zweier Oberflächen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:00 Fr 14.06.2019 | Autor: | ONeill |
Hallo zusammen!
Ich muss zugeben, dass meine Mathematikkenntnisse etwas eingerostet sind. Ich habe zwei Oberflächen und möchte den Abstand beider berechnen. Das generelle Vorgehen ist mir klar, allerdings habe ich das Problem, dass ich nicht in der Lage bin die Oberflächen in die Normalform zu bringen. Ich möchte mich nicht nur auf einen Punkt setzen und den Abstand berechnen, sondern allgemein beweisen, dass die Oberflächen parallel sind (das sieht man schon durch scharfes hingucken) und den Abstand berechnen. Letztendlich müsste ich auf zwei Abstände kommen wenn ich das richtig sehe.
Oberfläche 1:
[mm] |sin(2\pi\frac{x}{a})cos(2\pi\frac{y}{a})+sin(2\pi\frac{y}{a})cos(2\pi\frac{z}{a})+sin(2\pi\frac{z}{a})cos(2\pi\frac{x}{a})|=t_1 [/mm] mit a>0
Oberfläche 2:
[mm] |sin(2\pi\frac{x}{a})cos(2\pi\frac{y}{a})+sin(2\pi\frac{y}{a})cos(2\pi\frac{z}{a})+sin(2\pi\frac{z}{a})cos(2\pi\frac{x}{a})|=t_2 [/mm] mit a>0
Ich kenne bereits die Lösung, möchte mir diese aber selbst herleiten. Danke für eure Unterstützung.
Gruß
ONeill
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:09 Fr 14.06.2019 | Autor: | fred97 |
> Hallo zusammen!
> Ich muss zugeben, dass meine Mathematikkenntnisse etwas
> eingerostet sind. Ich habe zwei Ebenen und möchte den
> Abstand beider berechnen. Das generelle Vorgehen ist mir
> klar, allerdings habe ich das Problem, dass ich nicht in
> der Lage bin die Ebenen in die Normalform zu bringen. Ich
> möchte mich nicht nur auf einen Punkt setzen und den
> Abstand berechnen, sondern allgemein beweisen, dass die
> Ebenen parallel sind (das sieht man schon durch scharfes
> hingucken) und den Abstand berechnen. Letztendlich müsste
> ich auf zwei Abstände kommen wenn ich das richtig sehe.
>
> Ebene 1:
>
> [mm]|sin(2\pi\frac{x}{a})cos(2\pi\frac{y}{a})+sin(2\pi\frac{y}{a})cos(2\pi\frac{z}{a})+sin(2\pi\frac{z}{a})cos(2\pi\frac{x}{a})|=t_1[/mm]
> mit a>0
>
> Ebene 2:
>
> [mm]|sin(2\pi\frac{x}{a})cos(2\pi\frac{y}{a})+sin(2\pi\frac{y}{a})cos(2\pi\frac{z}{a})+sin(2\pi\frac{z}{a})cos(2\pi\frac{x}{a})|=t_2[/mm]
> mit a>0
Mit Verlaub, aber ich sehe nicht, was diese beiden Gleichungen mit Ebenen zu tun haben.
>
> Ich kenne bereits die Lösung, möchte mir diese aber
> selbst herleiten. Danke für eure Unterstützung.
>
> Gruß
> ONeill
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:23 Fr 14.06.2019 | Autor: | ONeill |
Hallo Fred,
du hast recht. Es handelt sich um Oberflächen. Ich habe die Frage dementsprechend korrigiert. Ich bin mir auch nicht sicher, ob dies noch in die Oberstufenmathematik gehört.
Danke für deine Rückmeldung.
Gruß
ONeill
|
|
|
|
|
> Hallo zusammen!
> Ich muss zugeben, dass meine Mathematikkenntnisse etwas
> eingerostet sind. Ich habe zwei Oberflächen und möchte
> den Abstand beider berechnen. Das generelle Vorgehen ist
> mir klar, allerdings habe ich das Problem, dass ich nicht
> in der Lage bin die Oberflächen in die Normalform zu
> bringen. Ich möchte mich nicht nur auf einen Punkt setzen
> und den Abstand berechnen, sondern allgemein beweisen, dass
> die Oberflächen parallel sind (das sieht man schon durch
> scharfes hingucken) und den Abstand berechnen.
Ich kann die Parallelität nicht durch scharfes Hingucken erkennen.
Nehmen wir mal für beide Flächen feste x- und y-Werte an.
Dann wird [mm]|sin(2\pi\frac{x}{a})cos(2\pi\frac{y}{a})+sin(2\pi\frac{y}{a})cos(2\pi\frac{z}{a})+sin(2\pi\frac{z}{a})cos(2\pi\frac{x}{a})|=t_1[/mm]
zu
[mm]|AB+Ccos(2\pi\frac{z}{a})+Dsin(2\pi\frac{z}{a})|=t_1[/mm]
und
[mm]|sin(2\pi\frac{x}{a})cos(2\pi\frac{y}{a})+sin(2\pi\frac{y}{a})cos(2\pi\frac{z}{a})+sin(2\pi\frac{z}{a})cos(2\pi\frac{x}{a})|=t_2[/mm]
zu
[mm]|AB+Ccos(2\pi\frac{z}{a})+Dsin(2\pi\frac{z}{a})|=t_2[/mm],
mit gleichen Werten für A, B, C und D. Damit die Gleichungen erfüllt werden, müssen nun für [mm] t_1 \ne t_2 [/mm] die z verschieden sein, aber da sie Argumente im sin bzw. cos sind, ergibt sich daraus nicht einfach eine gleichmäßige Verschiebung in z-Richtung, sondern eine kompliziertere Beziehung.
Auch könnte man so argumentieren, dass die Gradienten, die ja senkrecht auf der Oberfläche stehen, bei beiden Funktionen gleich aussehen und daher damit die Parallelität nachgewiesen ist. Das ist aber nicht der Fall: Rechnet man den Gradienten für einen Punkt P(x|y|z) auf der ersten Fläche aus, so kann man ihn nicht mit dem der zweiten vergleichen, weil P gar nicht auf der zweiten Fläche liegt.
Woran erkennst du die Parallelität?
|
|
|
|