www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Abstand zweier Polynome
Abstand zweier Polynome < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand zweier Polynome: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:57 So 22.06.2008
Autor: Lat

Aufgabe
Wir betrachten den euklidischen Raum der Polynome mit dem Skalarprodukt    < p , q >:= $ [mm] \integral_{-1}^{1}{p(x)q(x) dx} [/mm] $

Berechnen Sie $ [mm] d^{2}_{1,2}= \parallel p_{1}- p_{2}\parallel^{2} [/mm] $

zwischen den Polynomen

[mm] p_{1}(x):= x^{2}+x-4 [/mm]
[mm] p_{2}(x):=x+3 [/mm]

Ich habe diese Aufgabe in keinem anderem Forum auf keiner anderen Internetseite gestellt.    
        

Ich hänge schon ziemlich lange an diese Übungsaufgabe fest. Ich finde einfach keinen Ansatz. Es wäre nett, wenn mir jemand diese Übungsaufgabe mal als Beispiel vorrechnen könnte, damit ich den Weg verstehen kann und auf meine HA übertragen kann. Würde mich wirklich freuen.

Mit freundlichen Grüßen

Lat

        
Bezug
Abstand zweier Polynome: Tipp
Status: (Antwort) fertig Status 
Datum: 13:10 So 22.06.2008
Autor: barsch

Hi,

mein erster Gedanke war:

> [mm] d^{2}_{1,2}=\parallel p_{1}- p_{2}\parallel^{2} [/mm]

kannst du auch anders schreiben:

[mm] d^{2}_{1,2}= \parallel p_{1}- p_{2}\parallel^{2}= [/mm]

Mache dir das einmal klar. Wenn du das verstanden hast, dürfte der Rest kein Problem mehr darstellen.

Ich würde jetzt [mm] p_1-p_2\red{=:x} [/mm] berechnen und dann

[mm] =<\red{x},\red{x}>=.... [/mm] mit dem angegebenen Skalarprodukt berechnen.

> Ich finde einfach keinen Ansatz. Es wäre nett, wenn mir
> jemand diese Übungsaufgabe mal als Beispiel vorrechnen
> könnte, damit ich den Weg verstehen kann und auf meine HA
> übertragen kann. Würde mich wirklich freuen.

Mag jetzt vielleicht blöd klingen, aber einen Ansatz hast du ja jetzt und bevor dir das jetzt jemand vorrechnet, probiere doch mal dich "durchzukämpfen". Und wenn es Probleme gibt, einfach noch mal nachfragen. :-)

MfG barsch

Bezug
                
Bezug
Abstand zweier Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 So 22.06.2008
Autor: Lat

$ [mm] d^{2}_{1,2}= \parallel p_{1}- p_{2}\parallel^{2}= [/mm] $

So das setze ich dann in t $ [mm] \integral_{-1}^{1}{p(x)q(x) dx} [/mm] $ ein
Dann erhalte ich  $ [mm] \integral_{-1}^{1}{(x^{2}-7)(x^{2}-7) dx} [/mm] $
Davon bilde ich dann die Stammfunktion: [mm] [\bruch{1}{5}x^{5} -\bruch{14}{3}x^{3}+49x]= \bruch{668}{15}+\bruch{668}{15}=\bruch{1336}{15} [/mm]

Stimmt das so, dass kommt mir ziemlich merkwürdig vor?!
Danke für deine Mühe.

Lat



Bezug
                        
Bezug
Abstand zweier Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 So 22.06.2008
Autor: M.Rex

Hallo.

Das Ergebnis passt. Jetzt musst du nur noch die korrekten Rückschlüsse aus dem Ergebnis ziehen.

Marius

Bezug
                        
Bezug
Abstand zweier Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 So 29.06.2008
Autor: Skyside

Hier liegt ein Vorzeichenfehler vor beim Ausrechnen des Integrals.




Bezug
                                
Bezug
Abstand zweier Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 So 29.06.2008
Autor: MathePower

Hallo Skyside,

[willkommenmr]

> Hier liegt ein Vorzeichenfehler vor beim Ausrechnen des
> Integrals.
>  


Das ausgerechnete Integral und auch der errechnete Wert stimmen.

Wo soll da ein Vorzeichenfehler vorliegen?

Gruß
MathePower

Bezug
                                        
Bezug
Abstand zweier Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:58 Mo 30.06.2008
Autor: Skyside

Ahh, sorry. Selbst erkannt!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de