www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstandsberechnung (Ebenen)
Abstandsberechnung (Ebenen) < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstandsberechnung (Ebenen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Mo 15.05.2006
Autor: Mazemaniac

Aufgabe 1
Zeigen Sie, dass die Ebenen E und F zueinander parallel sind, Berechnen Sie Ihren Abstand.

E: [mm] \overrightarrow{x} [/mm] =  [mm] \pmat{ 2 \\ 3 \\ 5 } [/mm] + r [mm] \pmat{ 1 \\ 1 \\ 0} [/mm] + [mm] s\pmat{ 0 \\ 1 \\ 2} [/mm]

F: [mm] \overrightarrow{x} [/mm] =  [mm] \pmat{ 1 \\ 3 \\ 7} [/mm] + r [mm] \pmat{ 1 \\ 2 \\ 2} [/mm] + [mm] s\pmat{ 2 \\ 5 \\ 6} [/mm]  


Aufgabe 2
Gegeben sind die Ebenen E:  [mm] x_{1} [/mm] + [mm] 3x_{2} [/mm] -  [mm] 2x_{3} [/mm] = 0 und die Punkte A (0|2|0) und B (5|-1|-2).

a) Zeigen Sie, dass die gerade A und B paralel zu E ist.
b) Bestimmen Sie den Abstand der Punkte der Geraden durch A und B zur Ebene E.

Ho, ich weiß ist relativ viel, war aber die letzen Wochen krank und kann das daher nicht. Die Aufgaben sollen wohl mit Hilfe von Formeln, in denen die Hessesche Normalenform eine Rolle spielt gelöst werden können. Wenn möglich einigermaßen ausführlich beschreiben was zu tun ist und wie der Rechenweg lautet. Ihr helft mir auch schon sehr, wenn ihr nur eine Teilaufgabe löst.


Gruß

Matze

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abstandsberechnung (Ebenen): Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 15.05.2006
Autor: Disap

Moin Mazemaniac, herzlich [willkommenmr]

> Zeigen Sie, dass die Ebenen E und F zueinander parallel
> sind, Berechnen Sie Ihren Abstand.
>
> E: [mm]\overrightarrow{x}[/mm] =  [mm]\pmat{ 2 \\ 3 \\ 5 }[/mm] + r [mm]\pmat{ 1 \\ 1 \\ 0}[/mm]
> + [mm]s\pmat{ 0 \\ 1 \\ 2}[/mm]
>
> F: [mm]\overrightarrow{x}[/mm] =  [mm]\pmat{ 1 \\ 3 \\ 7}[/mm] + r [mm]\pmat{ 1 \\ 2 \\ 2}[/mm]
> + [mm]s\pmat{ 2 \\ 5 \\ 6}[/mm]

Dass Ebenen zueinander parallel sind, kannst du zeigen, indem du von der Ebene E und Ebene F den Normalenvektor mit Hilfe des Vektor- oder Kreuzprodukts bildest. Ist der Normalenvektor [mm] n_E [/mm] nun linear abhängig von [mm] n_F, [/mm] so sind die Ebenen parallel.
Wenn die die Ebene E zur Ebene F parallel ist, dann spielt es keine Rolle, welchen Punkt der Ebene E du nimmst, um den Abstand zur Ebene F zu bestimmen.
Das Problem lässt sich auf das Kochrezept: Abstand Punkt - Ebene (Hessesche Normalenform) zurückführen. Als Punkt nimmst du z. B. den Ortsvektor der Ebene E. (Darfst natürlich auch den der Ebene F nehmen)


> Gegeben sind die Ebenen E:  [mm]x_{1}[/mm] + [mm]3x_{2}[/mm] -  [mm]2x_{3}[/mm] = 0
> und die Punkte A (0|2|0) und B (5|-1|-2).
> a) Zeigen Sie, dass die gerade A und B paralel zu E ist.

Hier musst du die Geradengleichung aufstellen

[mm] $g:\vec{x}=\overline{0A}+\lambda \overline{AB}$ [/mm]

Der Normalenvektor [mm] n_L [/mm] (so nenne ich ihn einfach mal für die Aufgabe) der Ebene muss den Richtungsvektor [mm] \vec{u} [/mm] der Geraden senkrecht schneiden. Das zeigst du mit Hilfe des Skalarprodukts, es muss gelten:

[mm] $\vec{n_L}\cdot \vec{u} [/mm] = 0$

>  b) Bestimmen Sie den Abstand der Punkte der Geraden durch
> A und B zur Ebene E.

Dann nimmst du auch einfach wieder einen Punkt der Geraden (z. B. den Ortsvektor - den kann man ja leicht ablesen) und berechnest den Abstand zur Ebene [mm] \Rightarrow [/mm] Abstand Punkt - Ebene.
Du könntest auch einen beliebigen Punkt der Ebene nehmen und dann den Abstand des Punktes zur Geraden berechnen: Problem - Abstand Punkt-Gerade.

>  Ho, ich weiß ist relativ viel, war aber die letzen Wochen
> krank und kann das daher nicht. Die Aufgaben sollen wohl

Ich hoffe, du bist nun wieder gesund.

> mit Hilfe von Formeln, in denen die Hessesche Normalenform
> eine Rolle spielt gelöst werden können. Wenn möglich
> einigermaßen ausführlich beschreiben was zu tun ist und wie
> der Rechenweg lautet. Ihr helft mir auch schon sehr, wenn
> ihr nur eine Teilaufgabe löst.

Falls etwas unklar geblieben ist, kannst du gerne noch einmal nachfragen. Nachrechnen tu ich es gerne, aber vorrechnen eher nicht.

> Gruß
>  
> Matze
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de