www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Abzählbarkeit
Abzählbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abzählbarkeit: Beweis
Status: (Frage) beantwortet Status 
Datum: 19:23 Mi 12.01.2005
Autor: KingMob

Hallo!
Wie kann man beweisen, dass B := { [mm] (b_{n}) [/mm] mit n [mm] \in \IN [/mm] : [mm] b_{n} \in [/mm] {0,1} } , also die Menge aller Folgen, die aus 0 und 1 gebildet werden können, überabzählbar ist ?
Vielleicht mit einem Widerspruchsbeweis?
Wäre dankbar für jeden Lösungsvorschlag...

        
Bezug
Abzählbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Mi 12.01.2005
Autor: DaMenge

Hi,

kennst du den überabzählbar-beweis für die reellen Zahlen (von Cantor ?!?) - den kann man hier völlig analog verwenden !

viele grüße
DaMenge

Bezug
                
Bezug
Abzählbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 12.01.2005
Autor: KingMob

Hi!
Ja, ich hab schon davon gelesen, aber wie kann man solch ein Verfahren auf diese spezifische Menge mit 0 und 1 anwenden?
Mfg


Bezug
                        
Bezug
Abzählbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mi 12.01.2005
Autor: Guerk

Hallo,

mit dem Cantorschen Argument wird ja gezeigt, dass die Menge aller Zahlen aus dem Intervall [0,1] überabzählbar ist.
Aber das ist genau deine Menge! Denn du betrachtest die Folgen aller Zahlen zwischen 0 und 1. Schreib "0," davor und schon hast du alle Zahlen in genau diesem Intervall in binärer Darstellung.

Grüße

Bezug
        
Bezug
Abzählbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Do 13.01.2005
Autor: andreas

hi

zu deinem beweis: analog zu dem hier schon viel zitierten beweis von cantor nimmst du an, die menge sei abzählbar und scheribst gemäß dieser abzählung alle folgen untereinander. dann betrachtest du die diagonalfolge [m] (\tilde{a_n}) [/m] und bildest die folge

[m] a_n := \begin{cases} 0 & \textrm{ falls } \tilde{a_n} = 1 \\ 1 & \textrm{ falls } \tilde{a_n} = 0 \end{cases} [/m]


warum kann [m] (a_n) [/m] nicht in obiger aufzählung vorkommen?


grüße
andreas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de