www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Adapt. Prozess und Trajekt.
Adapt. Prozess und Trajekt. < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Adapt. Prozess und Trajekt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 So 09.12.2012
Autor: ajuda

Aufgabe
Definieren Sie "adaptierter Prozess" (an eine Filtration [mm] \mathbb{F}=(\mathcal{F}_t)_{t\geq 0}). [/mm]
Sei [mm] \tau [/mm] eine nichttriviale Stoppzeit bezüglich [mm] \mathbb{F}. [/mm]
Ist der Prozess [mm] (X_t)_{t\geq 0} [/mm] mit [mm] X_t=\max (\tau,t) [/mm] adaptiert an [mm] \mathbb{F}? [/mm] Wie sehen die Trajektorien aus?

Hallo, Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: matheplanet.com (suche "Adaptierter Prozess und Trajektorien"), dort aber auch nach über einer Woche noch keine Antwort erhalten.

Zunächst meine Lösungsversuche:
Wenn [mm] \tau\geq [/mm] t: [mm] \max(\tau,t)=\tau, \tau [/mm] ist adaptiert an [mm] \mathbb{F}, [/mm] weil [mm] \tau [/mm] eine Stoppzeit bezüglich [mm] \mathbb{F} [/mm] ist.
Wenn [mm] \tau { [mm] \tau+c\leq [/mm] t }={ [mm] \tau \leq [/mm] t-c [mm] }\in \mathcal{F}_{t-c} \subset \mathcal{F}_t [/mm]
bzw. { t [mm] \leq [/mm] t [mm] }=\Omega \in \mathcal{F}_t [/mm] für alle t
{ [mm] \max(\tau,t)\leq [/mm] t }={ [mm] \tau \leq [/mm] t } [mm] \cap [/mm] { t [mm] \leq [/mm] t } [mm] \in \mathcal{F}_t [/mm]
Weil [mm] \max(\tau,t) [/mm] Stoppzeit bezüglich [mm] \mathbb{F} [/mm] ist, ist [mm] X_t [/mm] adaptiert an [mm] \mathbb{F}. [/mm]

Jetzt weiß ich aber, dass die Argumentation über Stoppzeit so nicht funktioniert und der Ansatz wohl falsch ist. Allerdings will mir kein Ansatz gelingen, wie ich [mm] \mathcal{F}_t [/mm] - Messbarkeit beweisen oder widerlegen soll? Ist der Prozess überhaupt adaptiert?

Bei den Trajektorien müsste ich wohl nach [mm] \tau [/mm] < [mm] \infty [/mm] und [mm] \tau [/mm] = [mm] \infty [/mm] unterscheiden.
Falls [mm] \tau [/mm] < [mm] \infty [/mm] : Gerade parallel zu horizontaler Achse auf Höhe [mm] \tau [/mm] bis [mm] t=\tau, [/mm] dann Identitätsgerade.
Falls [mm] \tau [/mm] = [mm] \infty: [/mm] Trajektorien können nicht gezeichnet werden oder existieren nicht?

Ich hoffe ihr könnt mir bei der Aufgabe behilflich sein. Vielen Dank!

        
Bezug
Adapt. Prozess und Trajekt.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mo 10.12.2012
Autor: rafael_31415

Hallo,

bei der Frage ob der Prozess  [mm] (X_t)_{t\ge 0} [/mm] adaptiert ist, muss du überprüfen, ob [mm] X_t [/mm] eine [mm] F_t [/mm] messbare ZV ist für alle [mm] t\ge [/mm] 0.

Dies ist nicht der Fall, da schon [mm] X_0 [/mm] nicht [mm] F_0 [/mm] m.b. ist (I steht für die Indikatorfunktion):

[mm] X_0= \tau*I_{\{\tau \ge 0\}} [/mm] + [mm] 0*I_{\{\tau \le 0\}}=\tau*I_{\{\tau \ge 0\}} [/mm] = [mm] \tau [/mm]

und [mm] \tau [/mm] ist als nicht triviale Stoppzeit nicht [mm] F_0 [/mm] m.b.



Zu den Trajekotrien: Ich denke mal in diesem Fall ist [mm] \tau<\infty [/mm] gemeint; ansonsten ergibt die Frage keinen Sinn.


LG rafael


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de