www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Addition komplexer Brüche
Addition komplexer Brüche < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Addition komplexer Brüche: Rechenfehler irgendwo
Status: (Frage) beantwortet Status 
Datum: 18:47 Di 19.05.2015
Autor: Ceriana

Aufgabe
Bestimmen Sie [mm] \alpha [/mm] und [mm] \beta \in \mathbb{R} [/mm] so, dass

[mm] \frac{1+i}{2-i} [/mm] + [mm] \frac{3-2i}{2+3i} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

Hallo,

ich bin die Aufgabe oben so angegangen, dass ich beide Brüche erstmal mit den konjugierten Nennern erweitert habe, die reelen Nenner dann gleichnamig gemacht habe und dann die Brüche einfach addiert und durch den Nenner geteilt. Konkret:

[mm] \frac{1+i}{2-i} [/mm] + [mm] \frac{3-2i}{2+3i} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

[mm] \Leftrightarrow \frac{(1+i)\cdot (2+i)}{(2-i)\cdot (2+i)} [/mm] + [mm] \frac{(3-2i)\cdot (2-3i)}{(2+3i)\cdot(2-3i)} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

[mm] \Leftrightarrow \frac{3+3i}{5}+\frac{-13i}{-5} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

[mm] \Leftrightarrow \frac{15+15i}{15}+\frac{39i}{15} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

[mm] \Leftrightarrow \frac{15+54i}{15} [/mm] = [mm] \alpha [/mm] + [mm] \beta [/mm] i

[mm] \Leftrightarrow [/mm] 1+3.6i

Das ist laut Lösung aber nicht korrekt. Ich vermute ich habe irgendwo einen trivialen Rechenfehler gemacht, aber nach mehreren erneuten Rechnungen kann ich den Fehler nicht finden.

Kann mir da jemand weiterhelfen?

Liebe Grüße,

Ceriana

        
Bezug
Addition komplexer Brüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Di 19.05.2015
Autor: Ceriana

Fehler in der 3. Gleichung, im Nenner soll eine 3 statt einer 5 stehen. Der Fehler ist mir hier aber nur beim Tippen passiert.

Bezug
        
Bezug
Addition komplexer Brüche: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Di 19.05.2015
Autor: leduart

Hallo
du hast mehrere Fehler gemacht.

> Bestimmen Sie [mm]\alpha[/mm] und [mm]\beta \in \mathbb{R}[/mm] so, dass
>  
> [mm]\frac{1+i}{2-i}[/mm] + [mm]\frac{3-2i}{2+3i}[/mm] = [mm]\alpha[/mm] + [mm]\beta[/mm] i
>  Hallo,
>  
> ich bin die Aufgabe oben so angegangen, dass ich beide
> Brüche erstmal mit den konjugierten Nennern erweitert
> habe, die reelen Nenner dann gleichnamig gemacht habe und
> dann die Brüche einfach addiert und durch den Nenner
> geteilt. Konkret:
> Das Vorgehen ist korrekt.
> [mm]\frac{1+i}{2-i}[/mm] + [mm]\frac{3-2i}{2+3i}[/mm] = [mm]\alpha[/mm] + [mm]\beta[/mm] i
>  
> [mm]\Leftrightarrow \frac{(1+i)\cdot (2+i)}{(2-i)\cdot (2+i)}[/mm] +
> [mm]\frac{(3-2i)\cdot (2-3i)}{(2+3i)\cdot(2-3i)}[/mm] = [mm]\alpha[/mm] +
> [mm]\beta[/mm] i
>  
> [mm]\Leftrightarrow \frac{3+3i}{5}+\frac{-13i}{-5}[/mm] = [mm]\alpha[/mm] +
> [mm]\beta[/mm] i

>
1. Fehler  [mm] (1+i)\cdot [/mm] (2+i) falsch berechnet [mm] i^2=-1! [/mm]

2. Fehler [mm] (2+3i)\cdot(2-3i) [/mm] falsch berechnet ,da muss doch ddas Betragsquadrat des nenners also 4+9 rauskommen

weiter hab ich nicht mehr nachgesehen

Gruß leduart

Bezug
                
Bezug
Addition komplexer Brüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:13 Mi 20.05.2015
Autor: Ceriana

Oh man, wie vermutet elementare Rechenfehler. Hab alles korrigiert und habe nun das korrekte raus. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de