www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Affiner Raum
Affiner Raum < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affiner Raum: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:29 So 10.02.2013
Autor: Steffen2361

Aufgabe
Hey,

Ich bin beim lernen für meine MAthe Klausur auf folgende Aussage gekommen und ich weis einfach nicht was gemeint ist

Zitat:
Im affinen kann ich keine Längen messen, was kann ich jedoch messen? (Mit Erklärung)

mfg


Ich tippe mal darauf, dass es sich um den Abstand handen muss, aber das ist doch auch eine Länge oder?



        
Bezug
Affiner Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 So 10.02.2013
Autor: steppenhahn

Hallo,


> Ich bin beim lernen für meine MAthe Klausur auf folgende
> Aussage gekommen und ich weis einfach nicht was gemeint
> ist
>  
> Zitat:
>  Im affinen kann ich keine Längen messen, was kann ich
> jedoch messen? (Mit Erklärung)
>  
> mfg
>  Ich tippe mal darauf, dass es sich um den Abstand handen
> muss

Ja.

aber das ist doch auch eine Länge oder?

Ja, die Länge des Verbindungsvektors. Das ist etwas anderes.


Der Ausgangspunkt ist, dass Skalarprodukte und Normen zunächst nur für Vektorräume definiert werden können.

Ein Affiner Raum in z.B. [mm] $\IR^{n}$ [/mm] jedoch ist ein Raum der Form $W := a + V$ mit $V [mm] \subset \IR^{n}$ [/mm] ein Untervektorraum und $a [mm] \in \IR^{n}$. [/mm]

(Zum Beispiel eine Ebene mit Stützvektor $a$, ganz konkret $W [mm] =\left\{ \begin{pmatrix}100 \\ 0\\ 0\end{pmatrix} + \lambda\cdot \begin{pmatrix}0 \\ 1\\ 0\end{pmatrix} + \mu\cdot \begin{pmatrix}0 \\ 0\\ 1\end{pmatrix}: \mu, \lambda \in \IR\right\}$). [/mm]

Man kann also auf dem affinen Raum evtl. gar keine Norm und somit keine Länge definieren, weil es kein Vektorraum ist.

---

Dahingegen ist für zwei Punkte $p,q [mm] \in [/mm] W$: $p = a + [mm] v_1, [/mm] q = a + [mm] v_2$ [/mm] der Differenzvektor gegeben durch

$p - q = [mm] v_1 [/mm] - [mm] v_2 \in [/mm] V$,

das heißt, der Differenzvektor ist ein Element eines Vektorraums. Auf dem Vektorraum $V$ kann man (evtl.) eine Norm und ein Skalarprodukt definieren, und deswegen kann man zumindest dort die Länge des Differenzvektors (d.h. den Abstand von p und q) bestimmen.


Viele Grüße,
Stefan

Bezug
                
Bezug
Affiner Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Mo 11.02.2013
Autor: Steffen2361

Danke dir vielmals :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de