Affinität bestimmen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:27 Mi 26.11.2014 | Autor: | xx_xx_xx |
Aufgabe | Seinen
[mm] L_1=\vektor{1 \\ 0 \\ 0}+\IR\vektor{1 \\ 1 \\ 1}+\IR\vektor{1 \\ 0 \\ -1},
[/mm]
[mm] L_2=\vektor{0 \\ 1 \\ 0}+\IR\vektor{1 \\ 1 \\ 0}+\IR\vektor{0 \\ 0 \\ 1}
[/mm]
affine Unterräume von [mm] \IR^3.
[/mm]
(a) Geben Sie eine Affinität [mm] \phi: \IR^3 \to \IR^3 [/mm] an, die [mm] L_1 [/mm] in die Ebene
[mm] E_1= [/mm] { [mm] (y_1,y_2,y_3)^T \in \IR^3 [/mm] | [mm] y_1+y_2=2 [/mm] }
und [mm] L_2 [/mm] in die Ebene
[mm] E_2= [/mm] { [mm] (y_1,y_2,y_3)^T \in \IR^3 [/mm] | [mm] y_2=1 [/mm] }
abbildet. Ist [mm] \phi [/mm] eindeutig bestimmt?
(b) Bestimmen Sie [mm] \phi, [/mm] falls zusätzlich (zu den Aussagen aus (a)) [mm] \phi(\vektor{1 \\ 1 \\ 1}) [/mm] = [mm] \vektor{1 \\ 2 \\ 3} [/mm] gilt.
Ist [mm] \phi [/mm] eindeutlig bestimmt? |
Hallo!
ich weiß leider nicht, wie ich an diese Aufgabe heran gehen muss.
Wäre super, wenn mir jemand dabei helfen würde.
Danke!
xx_xx_xx
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:12 Mi 26.11.2014 | Autor: | Marcel |
Hallo,
> Seinen
>
> [mm]L_1=\vektor{1 \\ 0 \\ 0}+\IR\vektor{1 \\ 1 \\ 1}+\IR\vektor{1 \\ 0 \\ -1},[/mm]
>
> [mm]L_2=\vektor{0 \\ 1 \\ 0}+\IR\vektor{1 \\ 1 \\ 0}+\IR\vektor{0 \\ 0 \\ 1}[/mm]
>
> affine Unterräume von [mm]\IR^3.[/mm]
diese Formulierungen sind gängig, ich mag sie aber nicht. Da stehen
affine Unterräume des [mm] $\IR^3$ [/mm] - da sollte man nicht mehr sagen, dass sie welche
*seien* mögen.
Das ist so unnötig, wie zu sagen: "Sei $f [mm] \colon \IR \to \IR$ [/mm] mit [mm] $f(x)=x\,$ [/mm] stetig..."
Das, was da ist, braucht man nicht nochmal als eine zu erfüllende Voraussetzung
zu formulieren. (Sonst kann man auch: "Sei 2+2=4" sagen...)
> (a) Geben Sie eine Affinität [mm]\phi: \IR^3 \to \IR^3[/mm] an,
> die [mm]L_1[/mm] in die Ebene
>
> [mm]E_1=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
{ [mm](y_1,y_2,y_3)^T \in \IR^3[/mm] | [mm]y_1+y_2=2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
}
>
> und [mm]L_2[/mm] in die Ebene
>
> [mm]E_2=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
{ [mm](y_1,y_2,y_3)^T \in \IR^3[/mm] | [mm]y_2=1[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
}
>
> abbildet. Ist [mm]\phi[/mm] eindeutig bestimmt?
> ich weiß leider nicht, wie ich an diese Aufgabe heran
> gehen muss.
Naja, etwa
hier
kannst Du dahingehend rauslesen, was zu tun ist - jedenfalls erstmal,
um (irgend)eine affine Abbildung [mm] $L_1 \to E_1$ [/mm] zu finden...
Dann musst Du gucken, welche dieser Abbildungen auch noch die zweite
Forderung erfüllen, also entsprechende Kriterien erstmal formulieren und
mit diesen dann *geschickt suchen*.
P.S. Am Besten würdest Du Dich aber an Eurer Vorlesung orientieren, daher
wäre es am sinnvollsten, wenn Du Eure Sätze, die dahingehend Informationen
liefern (könnten), auch hier formulierst.
Bitte nichts abfotografieren oder einscannen (sofern es nicht aus Deiner
eigenen Feder stammt), falls möglich, könntest Du auch einen Link setzen...
Gruß,
Marcel
|
|
|
|
|
Um eine affine Abbildung [mm] \phi: A_1 [/mm] -> [mm] A_2 [/mm] zu bestimmen brauche ich doch zunächst eine lineare Abbildung f: [mm] U_1 [/mm] -> [mm] U_2 [/mm] wobei [mm] U_1 [/mm] der UVR von [mm] A_1 [/mm] und [mm] U_2 [/mm] der UVR von [mm] A_2 [/mm] ist, oder ist das die falsche Herangehensweise?
Basis UVR von [mm] L_1: U_{L_1}=(\vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ -1})
[/mm]
Basis UVR von [mm] L_2: U_{L_2}=(\vektor{1 \\ 0 \\ 0}, \vektor{0 \\ -1 \\ 1})
[/mm]
Basis UVR von [mm] E_1: U_{E_1}=(\vektor{1 \\ -2 \\ -1}, \vektor{0 \\ 0 \\ 1})
[/mm]
Basis UVR von [mm] E_2: U_{E_2}=(\vektor{1 \\ -1 \\ 0}, \vektor{0 \\ -1 \\ 1})
[/mm]
Für [mm] U_{L_1} [/mm] -> [mm] U_{E_1} [/mm] finde ich die bijektive lineare Abbildung:
f: [mm] U_{L_1} [/mm] -> [mm] U_{E_1}, \vektor{0 \\ x_2 \\ x_3} \mapsto \vektor{x_2 \\ -2* x_2 \\ x_3}
[/mm]
Bei [mm] U_{L_2} [/mm] -> [mm] U_{E_2} [/mm] finde ich allerdings keine.
Muss ich überhaupt über eine bijektive lineare Abbildung f zwischen den UVR gehen?
Vielen Dank schonmal!
xx_xx_xx
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Fr 28.11.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|