www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Algebra und Analysis + Axiome
Algebra und Analysis + Axiome < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Algebra und Analysis + Axiome: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 19:54 Fr 12.10.2007
Autor: hannesmeyer

Aufgabe 1
Mit der Verwendung von Axiomen beweisen:

1) a*0 = 0 ist.  a  [mm] \in [/mm] K
2) a + [mm] \infty [/mm] = b besitzt genau eine Lösung. [mm] \infty \in [/mm] K
3= a*b=0 so muss a oder b gleich 0 sein.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Aufgabe 2
1) a*0 = 0 ist.  a  [mm] \in [/mm] K
2) a + [mm] \infty [/mm] = b besitzt genau eine Lösung. [mm] \infty \in [/mm] K
3= a*b=0 so muss a oder b gleich 0 sein.

Hallo ich solle mit der Verwendung von Axiomen beweisen,

dass
1) a*0 = 0 ist.  a  [mm] \in [/mm] K
2) a + [mm] \infty [/mm] = b besitzt genau eine Lösung. [mm] \infty \in [/mm] K
3= a*b=0 so muss a oder b gleich 0 sein.

Allerdings weiß ich nicht wie ich ds machen soll.
Ich habe im Bereich Analysis ein sehr beschränktes Wissen.

Ich habe für 2 einen Ansatz, allerdings wäre mir eine Antwort von einem Profi lieber.


Wo kann ich in der Biblio mehr über Körperaxiome erfahren.
Im Inet und wikipedia finde ich nur allgemeine Erklärungen,
ich brauche aber etwas höheres, weil es eine Aufgabe ist, die wir aus einer Lesung haben.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Algebra und Analysis + Axiome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Fr 12.10.2007
Autor: angela.h.b.


> Mit der Verwendung von Axiomen beweisen:
>  
> 1) a*0 = 0 ist.  a  [mm]\in[/mm] K
> 2) a + [mm]\infty[/mm] = b besitzt genau eine Lösung. [mm]\infty \in[/mm] K
>  3= a*b=0 so muss a oder b gleich 0 sein.

Hallo,

[willkommenmr].

> Allerdings weiß ich nicht wie ich ds machen soll.
>  Ich habe im Bereich Analysis ein sehr beschränktes
> Wissen.

Ich nehme mal an, daß Du gerade die erste Vorlesung hattest.
Da habt Ihr die Körperaxiome "besprochen".
Du solltest sie jetzt vor Dir liegen haben, denn alles, was Du beim Bewiesen tust, mußt Du mit diesen Axiomen begründen.
Du darfst nichts verwenden, was in der Vorlesung nicht dran war.

Zum Buch:
diese Körpergeschichten müßten in vielen einführenden Analysisbüchern zu finden sein, schau Dich mal ein wenig um.
Ich selbst habe z.B. eine alte Ausgabe von Otto Forsters Analysis 1 auf dem Schreibtisch liegen, da findest Du drin, was Du benötigst. Gibt's bestimmt in der Bibliothek.
Wenn's um die Anfänge der Analysis geht, solltest Du Dir nicht unbedingt Algebrabücher ausleihen, da steht zuviel drin über Körper.

>  
> Ich habe für 2 einen Ansatz, allerdings wäre mir eine
> Antwort von einem Profi lieber.

Tja, da kennst Du dieses Forum noch nicht...
Wir haben das sehr gerne, wenn wir Ansätze zu sehen bekommen, das steht sogar in unseren Forenregeln.
Wir können dann viel besser helfen, wenn wir sehen, wo es Probleme gibt.
Es macht nichts, wenn etwas verkehrt ist, manchmal kann man es sogar noch etwas frisieren, so daß es dann stimmt.

Ich zeige Dir jetzt mal die erste Aufgabe, damit Du siehst, wie man das machen muß.

Ich verwende die Axiome  []für den Körper in der Fassung der Wikipedia, Du mußt vergleichen, ob das haargenau zu Deinen paßt. Manchmal gibt's kleine Unterschiede.

Zu zeigen:

Für alle a [mm] \in [/mm] K gilt a*0=0.

Beweis:

Sei a [mm] \in [/mm] K.

Es ist

a*0=a*(0+0)     denn 0 ist neutrales Element
=a*0+a*0          Distibutivgesetz

In einem Körper hat jedes Element ein Inverses bzgl der Addition, also gibt es ein Element -(a*0) mit a*0 + (-(a*0))=0.
Dieses Element wird nun zu a*0=a*0+a*0 addiert:

0=a*0+(-(a*0))=(a*0+a*0)+ (-(a*0))=a*0+(a*0+ (-(a*0))     Assoziativgesetz für die Addition
                                                          
=a*0 +0 =0    denn 0 ist das neutrale Element bzgl. der Addition.


Durchdenke das, versuche Dich an den anderen beiden und stell weitere Fragen bitte mit Deinen Lösungsansätzen.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de