www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Allg. Berechnung Winkel
Allg. Berechnung Winkel < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allg. Berechnung Winkel: Kreuzprodukt; Skalarprodukt
Status: (Frage) beantwortet Status 
Datum: 16:53 Fr 03.10.2008
Autor: RuffY

Aufgabe
Berechne ganz allg. den Winkel zwischen den Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b}, [/mm] wenn [mm] |\vec{a}x\vec{b}|=1 [/mm] und das Skalarprodukt [mm] \vec{a}*\vec{b}=-1 [/mm] ist.

Hallo,

zu oben stehender Aufgabe fehlt mir leider nach langer Überlegung der Ansatz, ich habe in meinen Aufzeichnungen und in Formelsammlungen geschaut, ob ich irgendwie das Skalarprodukt und das Kreuzprodukt sinnvoll zusammenbasteln kann, aber etwas sinniges ist leider nicht herausgekommen...habt ihr eine Idee?

Grüße

Sebastian

        
Bezug
Allg. Berechnung Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Fr 03.10.2008
Autor: Al-Chwarizmi


> Berechne ganz allg. den Winkel zwischen den Vektoren
> [mm]\vec{a}[/mm] und [mm]\vec{b},[/mm] wenn [mm]|\vec{a}x\vec{b}|=1[/mm] und das
> Skalarprodukt [mm]\vec{a}*\vec{b}=-1[/mm] ist.
>  
> Hallo,
>  
> zu oben stehender Aufgabe fehlt mir leider nach langer
> Überlegung der Ansatz, ich habe in meinen Aufzeichnungen
> und in Formelsammlungen geschaut, ob ich irgendwie das
> Skalarprodukt und das Kreuzprodukt sinnvoll zusammenbasteln
> kann, aber etwas sinniges ist leider nicht
> herausgekommen...habt ihr eine Idee?
>  
> Grüße
>  
> Sebastian


a und b seien die Beträge der beteiligten Vektoren und
[mm] \varphi [/mm] ihr Zwischenwinkel.
Du kennst sicher die Formeln

        [mm]|\vec{a}\times\vec{b}|=a*b*|sin(\varphi)|[/mm]

und

        [mm] \vec{a}*\vec{b}=a*b*cos(\varphi) [/mm]

Mit den Vorgaben der Aufgabe ergeben sich also die Gleichungen

         [mm] a*b*|sin(\varphi)|=1 [/mm]      und   [mm] a*b*cos(\varphi)=-1 [/mm]

Dividiert man die linken und die rechten Seiten(***), hat man:

         [mm] \bruch{|sin(\varphi)|}{cos(\varphi)}=-1 [/mm]

Daraus kann man schliessen, dass [mm] |tan(\varphi)|=1. [/mm]
Ausserdem muss [mm] cos(\varphi) [/mm] negativ sein und damit [mm] \varphi [/mm]
ein stumpfer Winkel. Dies passt nur, wenn [mm] \varphi=\bruch{3}{4}\pi=135°. [/mm]
Der Fall [mm] \varphi=225° [/mm] darf weggelassen werden, weil man
als Winkel zwischen Vektoren stets den im Intervall [0...180°] nimmt.



(***) dies ist hier sicher möglich, weil ja eben [mm] a*b*cos(\varphi)=-1≠0 [/mm] vorausgesetzt ist !

Bezug
                
Bezug
Allg. Berechnung Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Fr 03.10.2008
Autor: RuffY


> a und b seien die Beträge der beteiligten Vektoren und
> [mm]\varphi[/mm] ihr Zwischenwinkel.
>  Du kennst sicher die Formeln
>  
> [mm]|\vec{a}\times\vec{b}|=a*b*|sin(\varphi)|[/mm]
>  
> und
>  
> [mm]\vec{a}*\vec{b}=a*b*cos(\varphi)[/mm]
>  
> Mit den Vorgaben der Aufgabe ergeben sich also die
> Gleichungen
>  
> [mm]a*b*|sin(\varphi)|=1[/mm]      und   [mm]a*b*cos(\varphi)=-1[/mm]
>  
> Dividiert man die linken und die rechten Seiten(***), hat
> man:
>  
> [mm]\bruch{|sin(\varphi)|}{cos(\varphi)}=-1[/mm]
>  
> Daraus kann man schliessen, dass [mm]|tan(\varphi)|=1.[/mm]

bis hierhin kann ich dir folgen...

Jedoch kann ich nicht nachvollziehen, warum:

>  Ausserdem muss [mm]cos(\varphi)[/mm] negativ sein und damit
> [mm]\varphi[/mm]
>  ein stumpfer Winkel.

Und im folgenden ist mir die Beziehung dem stumpfen Winkel und:

> Dies passt nur, wenn
> [mm]\varphi=\bruch{3}{4}\pi=135°.[/mm]
>  Der Fall [mm]\varphi=225°[/mm] darf weggelassen werden, weil man
>  als Winkel zwischen Vektoren stets den im Intervall
> [0...180°] nimmt.
>

nicht klar. Ich wäre bereits intuitiv bei dem Ausdruck [mm]|tan(\varphi)|=1.[/mm] davon ausgegangen, dass [mm]\varphi=arctan(1)[/mm] ist.

Bezug
                        
Bezug
Allg. Berechnung Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Fr 03.10.2008
Autor: Al-Chwarizmi


> > a und b seien die Beträge der beteiligten Vektoren und
> > [mm]\varphi[/mm] ihr Zwischenwinkel.
>  >  Du kennst sicher die Formeln
>  >  
> > [mm]|\vec{a}\times\vec{b}|=a*b*|sin(\varphi)|[/mm]
>  >  
> > und
>  >  
> > [mm]\vec{a}*\vec{b}=a*b*cos(\varphi)[/mm]
>  >  
> > Mit den Vorgaben der Aufgabe ergeben sich also die
> > Gleichungen
>  >  
> > [mm]a*b*|sin(\varphi)|=1[/mm]      und   [mm]a*b*cos(\varphi)=-1[/mm]
>  >  
> > Dividiert man die linken und die rechten Seiten(***), hat
> > man:
>  >  
> > [mm]\bruch{|sin(\varphi)|}{cos(\varphi)}=-1[/mm]
>  >  
> > Daraus kann man schliessen, dass [mm]|tan(\varphi)|=1.[/mm]
>  bis hierhin kann ich dir folgen...
>  
> Jedoch kann ich nicht nachvollziehen, warum:
>  >  Ausserdem muss [mm]cos(\varphi)[/mm] negativ sein und damit
> > [mm]\varphi[/mm]
>  >  ein stumpfer Winkel.

     Wegen [mm] a\ge [/mm] 0 und [mm] b\ge [/mm] 0 folgt aus [mm]a*b*cos(\varphi)=-1[/mm],
     dass [mm] cos(\varphi) [/mm] negativ sein muss.

>  
> Und im folgenden ist mir die Beziehung dem stumpfen Winkel
> und:
>  > Dies passt nur, wenn

> > [mm]\varphi=\bruch{3}{4}\pi=135°.[/mm]
>  >  Der Fall [mm]\varphi=225°[/mm] darf weggelassen werden, weil
> man
>  >  als Winkel zwischen Vektoren stets den im Intervall
> > [0...180°] nimmt.
> >
> nicht klar. Ich wäre bereits intuitiv bei dem Ausdruck
> [mm]|tan(\varphi)|=1.[/mm] davon ausgegangen, dass [mm]\varphi=arctan(1)[/mm]
> ist.

Die Gleichung  [mm] |tan(\varphi)|=1 [/mm] führt auf die Möglichkeiten

     [mm] tan(\varphi)=1 [/mm]       (---> [mm] \varphi=45° [/mm] oder [mm] \varphi=225°) [/mm]

     [mm] tan(\varphi)=-1 [/mm]      (---> [mm] \varphi=-45°\hat=315° [/mm] oder [mm] \varphi=135°) [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de