Allgemeine Ableitungsregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:43 Mi 30.11.2011 | Autor: | Sparrow |
Aufgabe | [mm]f(x) = \bruch{3x^4(x^2+5x)^2}{(4+2x)^2}
und
f(x) = 3x^4(x^2+5x)^2
Sollen abgeleitet werden!
[/mm] |
Sodale, nun hat mich die Mathe wieder, nachdem ich nun in der Uni wieder bin. An sich habe ich alle Grundregeln noch drauf, doch im Bereich der Mathematik und den Grundregeln des Ableitens habe ich mir hier mal zwei Therme selbst gebastelt, um zu sehen wie das alles geht.
Quotientenregel war, dass ich den nenner mit dem Exponenten 2 erweitere und oben dann den Zaehler mit multipliziere?
Oben dann die einfache kettenregel, welche mir aber hier doch schwierigkeiten bereitet, da ich nicht weiss wie ich anfangen soll.
Zuerst [mm] 3x^4 [/mm] stehen lassen, die 2 vom exponenten nach vorne holen und die klammer stehen lassen --> [mm] 6x^4 (x^2+5x) [/mm] + nun das vordere glied: [mm] 12x^3 (x^2+5x) [/mm] + nun die klammer noch ableiten 2x + 5
ist das korrekt?
Bitte um die lösung und am besten schreibt Ihr mir auch gleich 2-3 Therme bei welchen ich mich probieren kann und dessen lösung ich dann gleich hier poste, damit ichs verstanden habe.
Hatte früher damit nie probleme, muss nur wieder reinfinden.
Vielen Dank für die Gedächtnisstütze :)
euer Sparrow
|
|
|
|
Hallo, dann sortieren wir mal wieder alle Regeln
f(x) = [mm] \bruch{3x^4(x^2+5x)^2}{(4+2x)^2} [/mm]
[mm] u=3x^4(x^2+5x)^2
[/mm]
[mm] v=(4+2x)^2
[/mm]
du benötigst also u' und v'
u wird nach Produktregel abgeleitet, 1. Faktor ist [mm] 3x^4, [/mm] Ableitung sollte kein Problem sein, 2. Faktor ist [mm] (x^2+5x)^2, [/mm] Ableitung nach Kettenregel
v wird nach Kettenregel abgeleitet
wenn das alles geschafft kommt die Quotientenregel zur Anwendung,
nun schlage erst einmal alle nötigen Regeln nach, stelle deine Ansätze erneut vor
Steffi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:04 Mi 30.11.2011 | Autor: | Sparrow |
U'(x) = [mm] 12x^3(x2+5x) [/mm] * [mm] 6x^4(x^2+5x) [/mm] * (2x+5)
v'(x) = 2(4+2x) * 2
Richtig soweit? Erst den Exponenten ableiten und danach das Innere der klammer? Danke für die Hilfestellung!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:07 Mi 30.11.2011 | Autor: | Sparrow |
in erster ableitung muss es natürlich:
[mm] 12x^3(x^2+5x) [/mm] * .... heißen und nicht x2 ;)
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:57 Mi 30.11.2011 | Autor: | Sparrow |
Aufgabe | f(x) = [mm] 3x^4(x^2+5x)^2
[/mm]
f(x) = [mm] \bruch{3x^4(x^2+5x)^2}{(4+2x)^2}
[/mm]
Leiten Sie diese beiden Therme ab. |
Hey Leute!
Bin raus aus der Schulmathematik und wollte als Wiederholung folgende Zwei Lösungen... Da ich die Produkt und QUotienten Regel nicht mehr beherrsche.
Mein Lösungsansatz:
f`(x) = [mm] 6x^4(x^2+5x) [/mm] x [mm] 12x^3(x^2+5x) [/mm] x (2x+5) (Produktregel)
f`(x) = [mm] \bruch{12x^3(x^2+5x)^2 x(4+2x)^2 x (2x+5)}{(4+2x)^4}
[/mm]
Bitte um Hilfe, was ich falsch gemacht habe :)
gerne auch weitere Therme zum Üben.
Vielen Dank,
Sparrow
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:15 Mi 30.11.2011 | Autor: | moody |
> Mein Lösungsansatz:
> f'(x) = [mm]6x^4(x^2+5x)[/mm] x [mm]12x^3(x^2+5x)[/mm] x (2x+5)
> (Produktregel)
Im ersten Summanden hast du die innere Ableitung vergessen, [mm] (x^2+5x) [/mm] muss auch abgeleitet werden.
Also die x als * sind deutlich ungeeignet weil man sich auch Variable verstehen kann. Dann muss dir klar sein dass bei der Produktregel eine Summe entsteht:
u(x) * v'(x) + u'(x) * v(x) = f'(x)
Was hast du denn im letzteren Teil gemacht? Du hast [mm] $3x^4$ [/mm] ableitet, und den Rest nicht, ist soweit schonmal gut. Es fehlt aber noch das ^2 bei dem Term in Klammern.
Und woher kommen die 2x+5 am Ende?
> f'(x) = [mm]\bruch{12x^3(x^2+5x)^2 x(4+2x)^2 x (2x+5)}{(4+2x)^4}[/mm]
Ich blicke noch nicht ganz durch was du da beim Zähler gerechnet hast. Abgesehen davon dass du den Zähler falsch abgeleitet hast, müsste ja dein Ergebniss der ersten Aufgabe 1:1 schonmal als u'(x) zu finden sein. Ist es aber irgendwie nicht? Möchtest du dir das nochmal angucken und korrigieren und dann gucken ob du den Bruch selber abgeleitet bekommst?
Quotientenregel
Der Nenner ist so richtig.
lg moody
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:23 Mi 30.11.2011 | Autor: | moody |
Ein Thread pro Aufgabenstellung reicht
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:41 Mi 30.11.2011 | Autor: | Sparrow |
Aufgabe | nochmals von vorne:
Ja, ich hatte in zweiter aufgabe nur den Exponenten ^2 normal nicht stehen, daher der Fehler.
Ich probier nun die komplette Ableitung:
f(x) = [mm] \bruch{3x^4(x^2+5x)^2}{(4+2x)^2}
[/mm]
--> f'(x) = [mm] \bruch{[12x^3(x^2+5x)^2 + 6x^4(x^2+5x) + (2x+5) + (4+2x)^2] - [3x^4(x^2+5x)^2 * 4(4+2x)+2]}{(4+2x)^4}
[/mm]
Sorry, für Doppelpost, konnte den ersten Beitrag nur nicht mehr bei meinen Beiträgen sehen und dachte, der wäre gelöscht geworden, da ich ihn in einem falschen Forum gepostet hatte. |
|
|
|
|
|
Hallo
[mm] u=3x^{4}
[/mm]
[mm] u'=12x^{3}
[/mm]
[mm] v=(x^{2}+5x)^{2}
[/mm]
[mm] v'=2*(x^{2}+5x)*(2x+5)=(x^{2}+5x)*(4x+10)
[/mm]
Quotientenregel [mm] \bruch{u'v-uv'}{v^{2}}
[/mm]
[mm] f'(x)=\bruch{12x^{3}*(x^{2}+5x)^{2}-3x^{4}*(x^{2}+5x)*(4x+10)}{(x^{2}+5x)^{4}}
[/mm]
nun noch etwas um die Klammern kümmern, kürze [mm] x^{2}+5x
[/mm]
Steffi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:18 Mi 30.11.2011 | Autor: | Sparrow |
Aufgabe | Haette ich genauso gelöst!
Nur haben wir bei mir:
u(x) = [mm] 3x^4(x^2+5x)^2
[/mm]
Wie lautet hier die perfekte Ableitung? Der Exponent 2 bereitet mir schwierigkeiten:
Lösungsvorschlag:
[mm] 2*12x^3(x^2+5x) [/mm] + (2x+5) ---> [mm] 24x^3(x^2+5x) [/mm] * (2x+5)
Ich nehme den Exponenten 2 als koeffizienten davor und bilde einfach das Produkt?
Im Anschluss analog zu deiner Aufgabe?
Danke für die schnelle Hilfestellung! |
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:37 Mi 30.11.2011 | Autor: | moody |
> Haette ich genauso gelöst!
>
> Nur haben wir bei mir:
>
> u(x) = [mm]3x^4(x^2+5x)^2[/mm]
>
> Wie lautet hier die perfekte Ableitung? Der Exponent 2
> bereitet mir schwierigkeiten:
>
> Lösungsvorschlag:
>
> [mm]2*12x^3(x^2+5x)[/mm] + (2x+5) ---> [mm]24x^3(x^2+5x)[/mm] * (2x+5)
>
> Ich nehme den Exponenten 2 als koeffizienten davor und
> bilde einfach das Produkt?
Hast du dir denn die Ableitungsregeln überhaupt einmal angeguckt? Du musst doch einfach nur das Schema durcharbeiten und die einzelnen Ableitungen sind ja jetzt auch keine Kracher.
Also ich machs dir einmal vor, vielleicht wird dir das dann klarer.
$f(x) = [mm] 3x^4(x^2+5x)^2 [/mm] $
$f(x) = u(x) * v(x)$
Wende die Produktregel an
$f'(x) = u(x) * v'(x) + u'(x) * v(x)$
mit
$u(x) = [mm] 3x^4$
[/mm]
$v(x) = [mm] (x^2+5x)^2$
[/mm]
Ableiten:
$u'(x) = [mm] 12x^3$
[/mm]
v(x) mit Kettenregel ableiten:
$v(x) = z(w(x))$
$z(x) = [mm] x^2$
[/mm]
$z'(x) = 2x$
$w(x) = [mm] x^2+5x$
[/mm]
$w'(x) = 2x+5$
[mm] \Rightarrow [/mm] $v'(x) = w'(x) * z'(h(x)) = [mm] (2x+5)*2(x^2+5x)$
[/mm]
Nun hast du alles, also einsetzen:
$f'(x) = u(x) * v'(x) + u'(x) * v(x)$
$f'(x) = [mm] 3x^4 [/mm] * [mm] (2x+5)*2(x^2+5x) [/mm] + [mm] 12x^3 (x^2+5x)^2$
[/mm]
lg moody
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 20:52 Mi 30.11.2011 | Autor: | Sparrow |
Aufgabe | --> f'(x) = [mm] \bruch{[12x^3(x^2+5x)^2 + 6x^4(x^2+5x) + (2x+5) * (4+2x)^2] - [3x^4(x^2+5x)^2 * 4(4+2x)+2]}{(4+2x)^4}
[/mm]
Muss natürlich "MAL" [mm] (4+2x)^2 [/mm] heissen im Zaehler.
So nun richtig? |
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:20 Mi 30.11.2011 | Autor: | moody |
> --> f'(x) = [mm]\bruch{[12x^3(x^2+5x)^2 + 6x^4(x^2+5x) + (2x+5) * (4+2x)^2] - [3x^4(x^2+5x)^2 * 4(4+2x)+2]}{(4+2x)^4}[/mm]
>
>
> Muss natürlich "MAL" [mm](4+2x)^2[/mm] heissen im Zaehler.
>
> So nun richtig?
Da steht doch mal?
|
|
|
|