Allgemeine Itoformel < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Welche SDE erfüllt der durch [mm] f(t,x)=e^{t+x} [/mm] definierte Prozess, wobei [mm] X_t=W_t. [/mm] |
Hallo zusammen!
Folgendes habe ich bereits berechnet:
1. Darstellung des Wiener-Prozesses als Semimartingal:
[mm] W_t=0+\int_0^t \underbrace{1}_{Y_s}dWs+\int_0^t \underbrace{0}_{Z_s} [/mm] ds
2. Allgemeine Ito-Formel:
[mm] f(t,X_t)=f(0,X_0)+\int_0^t f_x dWs+\int_0^t f_s+Z_s\cdot f_x+\frac{1}{2} Y_s^2 f_{xx}ds
[/mm]
3. Partielle Ableitungen
[mm] f_x=e^{t+x}, f_{xx} =e^{t+x}, f_t=e^{t+x}
[/mm]
4.Einsetzen in 2 ergibt:
[mm] e^{t+W_t}=1+\int_0^t e^{s+W_s}dWs+\frac{3}{2} \int e^{s+W_s}ds
[/mm]
Nun wollte ich das ganze kontrollieren, aber ich krieg einfach nicht dasselbe raus:
[mm] 1+e^s\int_0^t e^{W_s}dWs+\frac{3e^{W_s}}{2} \int_0^t e^{s}ds
[/mm]
[mm] =1+e^s \left[e^{W_s}\right]^t_0+\frac{3e^{W_s}}{2}\left[e^{s}\right]^t_0
[/mm]
[mm] =1+e^s\cdot (e^{W_t}-e^{W_0})+\frac{3e^{W_s}}{2}(e^t-e^0)
[/mm]
[mm] =1+e^s \cdot (e^{W_t}-1)+\frac{3e^{W_s}}{2}(e^t-1)
[/mm]
Wo habe ich hier meinen Denkfehler?
Wäre super, wenn mir irgendjemand helfen könnte. Danke!
|
|
|
|
Soweit ich das überblicke, ist dein Ergebnis, also die Anwendung der Ito-Formel richtig. Bei der Probe versuchst du allerdings bekannte Regeln für Riemann-Stieltjes-Integrale anzuwenden. Das geht aber schief, denn die hier auftretenden Ito-Integrale haben keinen beschränkten Integranden...
|
|
|
|