www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Allgemeine/Spezielle Lösung
Allgemeine/Spezielle Lösung < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine/Spezielle Lösung: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 18:31 Sa 06.12.2008
Autor: g.e.r.d.e.n.

Aufgabe
Geben Sie die allgemeine Lösung von Ax=b an und schreiben Sie die allgemeine Lösung des zugehörigen homogenen Systems auf. Geben Sie eine spezielle Lösung des inhomogenen Systems an.

A und b sind mir bekannt die Lösung x habe ich auch sowohl für das homogene als auch das imhomogene GLS ermittelt. Meine Frage bezieht sich nun auf den ersten Teilsatz der Aufgabenstellung. Warum ist zweimal nach der allgemeinen Lösung gefragt? Ist die allgemeine Lösung von Ax=b die spezielle Lösung des imhomogenen Systems? Was sind die Unterschiede zwischen den drei geforderten Lösungen? Vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Allgemeine/Spezielle Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Sa 06.12.2008
Autor: angela.h.b.

Hallo,

[willkommenmr].

Du hast ein inhomogenes lineare GS   Ax=b.

Nun Interessiert man sich für die Lösungsmenge.

In diesem Zusammenhang redet man über Dreierlei:

- die allgemeine Lösung des homogenen Systems, also über die [mm] L_h:=\{x| Ax=0\} [/mm]

- eine spezielle Lösung des inhomogenen Systems, also über ein einziges [mm] x_s, [/mm]  für welches [mm] Ax_s=b [/mm] gilt

- die allgemeine Lösung L des inhomogenen Systems, welche man aus der Summe der speziellen Lösung des inhomogenen und der allgmeinen des homogenen Systems  erhält, also [mm] L=x_s [/mm] + [mm] L_h. [/mm]


Wenn nicht alles klar ist, poste Dein GS und alles, was Du bisher berechnet hast, damit man das am konkreten Beispiel zeigen kann.

Gruß v. Angela

Bezug
                
Bezug
Allgemeine/Spezielle Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Mo 08.12.2008
Autor: g.e.r.d.e.n.

Danke für die schnelle Antwort, allerdings ist es mir dadurch nicht klarer, was ich tun soll.
Also mein GLS, also die Matrix A, ist:
[mm] \pmat{ -2 & -1 & 2 & -2 & 0 & 0 & 5 & 3 & 0 \\ -2 & -5 & -8 & 1 & 0 & 0 & -9 & -7 & -2 \\ 4 & 14 & 34 & -7 & 0 & 0 & 44 & 32 & 6 \\ 0 & -2 & 1 & -0 & 3 & 0 & 2 & 1 & -1 \\ 3 & 0 & 4 & -1 & 5 & 2 & 6 & 4 & 0} [/mm]
b= [mm] \vektor{1 \\ 1 \\ 2 \\ 3 \\ 2} [/mm]
Meine Lösung für Ax=0 ist:
[mm] x_{h}=x(s_{1},s_{2},s_{3},s_{4})=\vektor{s_{4} \\ -7s_{1}-6s_{2}-5s_{3}-2s_{4} \\ s_{2}\\6s_{1}+4s_{2}+4s_{3}\\0\\-3/2s_{4}\\s_{1}\\s_{3} \\16s_{1}+13s_{2}+11s_{3}+4s_{4}} [/mm]
Meine Lösung für Ax=b ist:
[mm] x=\vektor{0 \\ 3 \\ 0\\-2 \\ 0\\ 0\\ 0\\0 \\ -9 }+ \vektor{s_{4} \\ -7s_{1}-6s_{2}-5s_{3}-2s_{4} \\ s_{2}\\6s_{1}+4s_{2}+4s_{3}\\0\\-3/2s_{4}\\s_{1}\\s_{3} \\16s_{1}+13s_{2}+11s_{3}+4s_{4}} [/mm]
Mir ist nun immer noch nicht klar wie ich auf die geforderte allgemeine lösung komme. Addiere ich einfach beide Ergebnisse(was mir allerdings vollkommen unlogisch erscheint)? Oder ist die spezielle Lösung bereits die allgemeine und gar nicht die spezielle?
Vielen Dank
Simon

Bezug
                        
Bezug
Allgemeine/Spezielle Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Mo 08.12.2008
Autor: angela.h.b.


> Danke für die schnelle Antwort, allerdings ist es mir
> dadurch nicht klarer, was ich tun soll.
>  Also mein GLS, also die Matrix A, ist:
>  [mm]\pmat{ -2 & -1 & 2 & -2 & 0 & 0 & 5 & 3 & 0 \\ -2 & -5 & -8 & 1 & 0 & 0 & -9 & -7 & -2 \\ 4 & 14 & 34 & -7 & 0 & 0 & 44 & 32 & 6 \\ 0 & -2 & 1 & -0 & 3 & 0 & 2 & 1 & -1 \\ 3 & 0 & 4 & -1 & 5 & 2 & 6 & 4 & 0}[/mm]
>  
> b= [mm]\vektor{1 \\ 1 \\ 2 \\ 3 \\ 2}[/mm]


Hallo,

das ist ja so groß! Nachrechnen tue ich nichts. ich gehe davon aus, daß Du richtig gerechnet hast.

>  Meine Lösung für Ax=0
> ist:
>  [mm]x_{h}=x(s_{1},s_{2},s_{3},s_{4})=\vektor{s_{4} \\ -7s_{1}-6s_{2}-5s_{3}-2s_{4} \\ s_{2}\\6s_{1}+4s_{2}+4s_{3}\\0\\-3/2s_{4}\\s_{1}\\s_{3} \\16s_{1}+13s_{2}+11s_{3}+4s_{4}}[/mm]

das ist die allgemeine Lösung des homogenen Systems.

[mm] \vektor{0 \\ 3 \\ 0\\-2 \\ 0\\ 0\\ 0\\0 \\ -9 } [/mm] ist eine spezielle Lösung des inhomogenen Systems und

die Summe aus beidem:

>  [mm]x=\vektor{0 \\ 3 \\ 0\\-2 \\ 0\\ 0\\ 0\\0 \\ -9 }+ \vektor{s_{4} \\ -7s_{1}-6s_{2}-5s_{3}-2s_{4} \\ s_{2}\\6s_{1}+4s_{2}+4s_{3}\\0\\-3/2s_{4}\\s_{1}\\s_{3} \\16s_{1}+13s_{2}+11s_{3}+4s_{4}}[/mm]

die allgemeine Lösung des inhomogenen Systems.

Gruß v. Angela


Bezug
                                
Bezug
Allgemeine/Spezielle Lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:17 Mo 08.12.2008
Autor: g.e.r.d.e.n.

Vielen, vielen Dank! Jetzt ist mir alles klar!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de