www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Allgemeines Assoziativgesetz
Allgemeines Assoziativgesetz < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeines Assoziativgesetz: Beweis, Kontrolle, Tipp
Status: (Frage) beantwortet Status 
Datum: 15:38 So 03.11.2013
Autor: ne1

Aufgabe
Beweise [mm] $x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] = [mm] (...(x_1 [/mm] + [mm] x_2) [/mm] + [mm] x_3) [/mm] + ...) + [mm] x_n$. [/mm]

Induktionsanfang:
Ich muss beweisen: [mm] $x_1 [/mm] + [mm] x_2 [/mm] + [mm] x_3 [/mm] = [mm] (x_1 [/mm] + [mm] x_2) [/mm] + [mm] x_3$. [/mm]
Aus dem Assoziativgesetz und [mm] $x_1 [/mm] + [mm] (x_2 [/mm] + [mm] x_3)$ [/mm] folgt [mm] $x_1 [/mm] + [mm] (x_2 [/mm] + [mm] x_3)$ [/mm] also ist die Klammerung egal, man kann deshalb [mm] $x_1 [/mm] + [mm] x_2 [/mm] + [mm] x_3$ [/mm] schreiben.

Induktionsschritt:
Annahme: [mm] $x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] = [mm] (...((x_1 [/mm] + [mm] x_2) [/mm] + [mm] x_3) [/mm] + ...) + [mm] x_n$. [/mm] Ich muss beweisen: [mm] $x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] + [mm] x_{n+1} [/mm] = [mm] ((...((x_1 [/mm] + [mm] x_2) [/mm] + [mm] x_3) [/mm] + ...) + [mm] x_n) [/mm] + [mm] x_{n+1}$. [/mm] Nach IV erhalte ich [mm] $(...((x_1 [/mm] + [mm] x_2) [/mm] + [mm] x_3) [/mm] + ...) + [mm] x_n [/mm]  + [mm] x_{n+1} [/mm] = [mm] ((...((x_1+x_2)+x_3) [/mm] + ...) + [mm] x_n [/mm] ) + [mm] x_{n+1}$. [/mm] Das kann man schreiben als [mm] $a+x_n+x_{n+1} [/mm] = [mm] (a+x_n) [/mm] + [mm] x_{n+1}$. [/mm] Nach dem Induktionssanfang folgt $(a + [mm] x_n) [/mm] + [mm] x_{n+1} [/mm] = a + [mm] (x_n [/mm] + [mm] x_{n+1})$ [/mm] also ist die Gleichung [mm] $a+x_n+x_{n+1} [/mm] = [mm] (a+x_n) [/mm] + [mm] x_{n+1}$ [/mm] wahr d.h. [mm] $x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] + [mm] x_{n+1} [/mm] = [mm] ((...((x_1 [/mm] + [mm] x_2) [/mm] + [mm] x_3) [/mm] + ...) + [mm] x_n) [/mm] + [mm] x_{n+1}$ [/mm] ist wahr.

Bitte kontrollieren, ob es stimmt was ich geschrieben habe.

        
Bezug
Allgemeines Assoziativgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 So 03.11.2013
Autor: M.Rex

Hallo

> Beweise [mm]x_1 + x_2 + ... + x_n = (...(x_1 + x_2) + x_3) + ...) + x_n[/mm].

>

> Induktionsanfang:
> Ich muss beweisen: [mm]x_1 + x_2 + x_3 = (x_1 + x_2) + x_3[/mm].

>

> Aus dem Assoziativgesetz und [mm]x_1 + (x_2 + x_3)[/mm] folgt [mm]x_1 + (x_2 + x_3)[/mm]
> also ist die Klammerung egal, man kann deshalb [mm]x_1 + x_2 + x_3[/mm]
> schreiben.

>

> Induktionsschritt:
> Annahme: [mm]x_1 + x_2 + ... + x_n = (...((x_1 + x_2) + x_3) + ...) + x_n[/mm].
> Ich muss beweisen: [mm]x_1 + x_2 + ... + x_n + x_{n+1} = ((...((x_1 + x_2) + x_3) + ...) + x_n) + x_{n+1}[/mm].
> Nach IV erhalte ich [mm](...((x_1 + x_2) + x_3) + ...) + x_n + x_{n+1} = ((...((x_1+x_2)+x_3) + ...) + x_n ) + x_{n+1}[/mm].
> Das kann man schreiben als [mm]a+x_n+x_{n+1} = (a+x_n) + x_{n+1}[/mm].
> Nach dem Induktionssanfang folgt [mm](a + x_n) + x_{n+1} = a + (x_n + x_{n+1})[/mm]
> also ist die Gleichung [mm]a+x_n+x_{n+1} = (a+x_n) + x_{n+1}[/mm]
> wahr d.h. [mm]x_1 + x_2 + ... + x_n + x_{n+1} = ((...((x_1 + x_2) + x_3) + ...) + x_n) + x_{n+1}[/mm]
> ist wahr.

>

> Bitte kontrollieren, ob es stimmt was ich geschrieben habe.

Die Grundidee ist sehr gut, aber etwas kompliziert aufgeschrieben.

Du hast:

[mm] \red{(}(\cdots(x_{1}+x_{2})+x_{3})+\ldots+x_{n-1})+x_{n}\red{)}+x_{n+1} [/mm]

Auf die rot markierte Klammer gilt das Assotiativgesetz, also kannst du das schreiben als [mm] x_{1}+\ldots+x_{n}, [/mm] somit wird


[mm] \red{(}(\cdots(x_{1}+x_{2})+x_{3})+\ldots+x_{n-1})+x_{n}\red{)}+x_{n+1} [/mm]
zu
[mm] x_{1}+x_{2}+\ldots+x_{n}+x_{n+1} [/mm]

Und genau das war zu zeigen.

Marius

Bezug
                
Bezug
Allgemeines Assoziativgesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 So 03.11.2013
Autor: ne1


> Du hast:
>  
> [mm]\red{(}(\cdots(x_{1}+x_{2})+x_{3})+\ldots+x_{n-1})+x_{n}\red{)}+x_{n+1}[/mm]
>  
> Auf die rot markierte Klammer gilt das Assotiativgesetz,
> also kannst du das schreiben als [mm]x_{1}+\ldots+x_{n},[/mm] somit
> wird
>  
>
> [mm]\red{(}(\cdots(x_{1}+x_{2})+x_{3})+\ldots+x_{n-1})+x_{n}\red{)}+x_{n+1}[/mm]
>  zu
>  [mm]x_{1}+x_{2}+\ldots+x_{n}+x_{n+1}[/mm]
>  
> Und genau das war zu zeigen.
>  
> Marius

Da habe ich aber leider immer noch ein Problem. Ich will zeigen $ [mm] x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] + [mm] x_{n+1} [/mm] = [mm] ((...((x_1 [/mm] + [mm] x_2) [/mm] + [mm] x_3) [/mm] + ...) + [mm] x_n) [/mm] + [mm] x_{n+1} [/mm] $. Ich wende die IV an und erhalte $ [mm] x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] + [mm] x_{n+1} [/mm] = [mm] (x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n) [/mm] + [mm] x_{n+1} [/mm] $ und nicht wie du geschrieben hast [mm] $x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] + [mm] x_{n+1} [/mm] = [mm] x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] + [mm] x_{n+1} [/mm] $. Und hier hänge ich gerade. Ich muss irgendwie noch zeigen, dass tatsächlich [mm] $x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] + [mm] x_{n+1} [/mm] = [mm] (x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n) [/mm] + [mm] x_{n+1} [/mm] $

Bezug
                        
Bezug
Allgemeines Assoziativgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 So 03.11.2013
Autor: leduart

Hallo
irgendwie vermisse ich, dass du nicht das Kommutativgesetz mehrfach anwendest. die Pünktchen bedeuten doch wohl, dass x1+(x2+x3) an jeder beliebigen stelle stehen dürfen?
Gruss leduart

Bezug
                                
Bezug
Allgemeines Assoziativgesetz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:45 So 03.11.2013
Autor: ne1


> Hallo
>  irgendwie vermisse ich, dass du nicht das Kommutativgesetz
> mehrfach anwendest. die Pünktchen bedeuten doch wohl, dass
> x1+(x2+x3) an jeder beliebigen stelle stehen dürfen?
>  Gruss leduart


Leider habe ich deine Antwort nicht ganz verstanden. Die Pünktchen sind, denke ich, selbstverständlich.

Ich habe bereits  [mm] $x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] + [mm] x_{n+1} [/mm] = [mm] (x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n) [/mm] + [mm] x_{n+1}$. [/mm] D.h. [mm] $(x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n)$ [/mm] kann jede mögliche Klammerung haben z.B. [mm] $(x_1 [/mm] + [mm] (x_2 [/mm] + [mm] x_3) [/mm] + ... + [mm] x_n)$, [/mm] ich habe aber bis jetzt noch nicht gezeigt ob z.B. [mm] $x_1 [/mm] + [mm] x_2 [/mm] + ... + [mm] x_n [/mm] + [mm] x_{n+1} [/mm] = [mm] x_1 [/mm] + [mm] (x_2 [/mm] + [mm] ...(x_n [/mm] + [mm] x_{n+1})...)$ [/mm] wahr ist.

Bezug
                                        
Bezug
Allgemeines Assoziativgesetz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 11.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de