www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Alternierende Quersumme
Alternierende Quersumme < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Alternierende Quersumme: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:44 Mi 16.06.2010
Autor: Hijack

Aufgabe
Für die Zahl
a = (anan−1 . . . a1a0)10 = a0 + a1 · 10 + a2 · 10² + . . . + an−1 · [mm] 10^n-1 [/mm] + an · [mm] 10^n [/mm]
heißt
Q2(a) := a0 + a1 · 10 + a2 + a3 · 10 + . . .
Quersumme 2. Ordnung.
Z.B. ist Q2(12345) = 45 + 23 + 1 = 69.
Beweisen Sie: a ist durch 3 bzw. 9 bzw. 11 genau dann teilbar, wenn es die Quersumme
2. Ordnung ist (nicht alternierende Quersumme)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi, ich hänge jetzt schon seit mehr als einer Stunde an dieser Aufgabe und bekomme keinen richtigen Ansatz hin. Ich habe es auch über die Restklassen versucht aber bekomme keine logische Argumentation hin. Wer kann mir helfen?

        
Bezug
Alternierende Quersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mi 16.06.2010
Autor: MathePower

Hallo Hijack,

[willkommenmr]


> Für die Zahl
>  a = (anan−1 . . . a1a0)10 = a0 + a1 · 10 + a2 · 10² +
> . . . + an−1 · [mm]10^n-1[/mm] + an · [mm]10^n[/mm]
>  heißt
>  Q2(a) := a0 + a1 · 10 + a2 + a3 · 10 + . . .
>  Quersumme 2. Ordnung.
>  Z.B. ist Q2(12345) = 45 + 23 + 1 = 69.
>  Beweisen Sie: a ist durch 3 bzw. 9 bzw. 11 genau dann
> teilbar, wenn es die Quersumme
>  2. Ordnung ist (nicht alternierende Quersumme)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hi, ich hänge jetzt schon seit mehr als einer Stunde an
> dieser Aufgabe und bekomme keinen richtigen Ansatz hin. Ich
> habe es auch über die Restklassen versucht aber bekomme
> keine logische Argumentation hin. Wer kann mir helfen?


Berechne a und Q2(a) modulo 3,9 und 11.
Zeige dann, daß diese gleich sind.


Gruss
MathePower

Bezug
                
Bezug
Alternierende Quersumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Do 17.06.2010
Autor: Hijack

Aufgabe
Berechne a und Q2(a) modulo 3,9 und 11.
Zeige dann, daß diese gleich sind.  

Aber wie kann ich die berechnen?
Ich weiß lediglich, dass bei a mod 3 die Reste (0,1,2)
bei a modulo 9 die Reste (0,1,2,3,4,5,6,7,8) und bei a mod 11 die Reste (0,1...,10) auftauchen können. Wie kann ich denn dann die modulus zu Q2(a) berechnen? Hier weiß ich ja ebenfalls nur dass 10= 1 mod 3 ; 10= 1 mod 9 und 10= 10 mod 11 ist.
Bitte um genauere Erläuterung, wie ich nun genau a und Q2(a) berechnen kann.

Bezug
                        
Bezug
Alternierende Quersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Do 17.06.2010
Autor: MathePower

Hallo Hijack,


> Berechne a und Q2(a) modulo 3,9 und 11.
>  Zeige dann, daß diese gleich sind.
> Aber wie kann ich die berechnen?
>  Ich weiß lediglich, dass bei a mod 3 die Reste (0,1,2)
>  bei a modulo 9 die Reste (0,1,2,3,4,5,6,7,8) und bei a mod
> 11 die Reste (0,1...,10) auftauchen können. Wie kann ich
> denn dann die modulus zu Q2(a) berechnen? Hier weiß ich ja
> ebenfalls nur dass 10= 1 mod 3 ; 10= 1 mod 9 und 10= 10 mod
> 11 ist.
> Bitte um genauere Erläuterung, wie ich nun genau a und
> Q2(a) berechnen kann.


Berechne

[mm]a = a_{0} + a_{1} 10 + a_{2} 10 ^{2} + . . . + a_{n−1} 10^{n-1} + a_{n} 10^{n} [/mm]

und

[mm]Q2(a) := a_{0} + a_{1} 10 + a_{2} + a_{3} 10 + . . .[/mm]

modulo 3, 9 und 11 und zeige dann, daß

a mod 3 = Q2(a) mod 3, a mod 9 = Q2(a) mod 9 a mod 11 = Q2(a) mod 11

ist.

Hier genügt es, den Ausdruck [mm]10^{k}, \ k \in \IN_{0}[/mm] modulo 3, 9 und 11
zu berechnen,   um dies zu zeigen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de