www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Altes Dach Strecken berechnen
Altes Dach Strecken berechnen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Altes Dach Strecken berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Di 16.02.2016
Autor: hase-hh

Aufgabe
Berechne die Strecken x und y (in Meteern) eines alten Daches, s. Skizze!

[Dateianhang nicht öffentlich]

Moin Moin,

zu obiger Aufgabe fehlt mir eine Idee, ein Lösungsansatz.

DIe Aufgabe stammt aus einem Mathe-Buch für die Mittelstufe unter dem Kapitel "Pythagoras".

Nun könnte ich zwar rechtwinkliger Dreiecke bilden...  und daraus den Pythagoras, allerdings würde ich weitere Größen (z und w) hinzufügen und damit weiter im Wald stehen!  

[mm] y^2 [/mm] = [mm] z^2 [/mm] + [mm] w^2 [/mm]     mit z Breite und w Höhe...

[mm] x^2 [/mm] = 85,4 [mm] -z)^2 [/mm] +  (4,8 - [mm] w)^2 [/mm]


Hat jemand eine Idee.

Danke für eure Hilfe!







Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Altes Dach Strecken berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Di 16.02.2016
Autor: holomorph

Du musst die 60-Grad-Winkel beachten. Die beiden rechtwinkligen Dreiecke mit 60-Grad-Winkel sind jeweils halbe gleichseitige Dreiecke. Daraus gewinnst du sofort die jeweils kürzesten Seiten dieser Dreiecke und dann per Pythagoras auch die anderen Katheten (die Höhen der erwähnten gleichseitigen Dreiecke).

Wenn du so alle Strecken berechnet hast, liefern dir die angegebenen Längen von 4,8 m und 5,4 m jeweils eine Gleichung, zusammen zwei Gleichungen mit zwei Unbekannten, was ja nun lösbar ist.

Bezug
                
Bezug
Altes Dach Strecken berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Di 16.02.2016
Autor: hase-hh

Ich habe das noch nicht ganz verstanden, aber ich probiere mal...

bei einem gleichseitigen Dreieck gilt ja, h = [mm] \bruch{\wurzel{3}}{2}*a [/mm]

bzw.  [mm] h_x [/mm] = [mm] \bruch{\wurzel{3}}{2}*x [/mm]

Nun könnte ich zwar  [mm] x^2 [/mm] = [mm] (\bruch{\wurzel{3}}{2}*x)^2 [/mm] + [mm] (\bruch{x}{2})^2 [/mm]

aufstellen... führt aber zu nichts... [mm] x^2 [/mm] = [mm] x^2 [/mm]


Noch n Vesuch:

I. [mm] x^2 [/mm] =  [mm] (\bruch{x}{2})^2 [/mm] + (4,8 - [mm] \bruch{y}{2})^2 [/mm]

II. [mm] y^2 [/mm] = [mm] (\bruch{y}{2})^2 [/mm] + (5,4 - [mm] \bruch{x}{2})^2 [/mm]


I. [mm] \bruch{3}{4}*x^2 [/mm] = (4,8 - [mm] \bruch{y}{2})^2 [/mm]

II. [mm] \bruch{3}{4}*y^2 [/mm] = (5,4 - [mm] \bruch{x}{2})^2 [/mm]

I.  [mm] \bruch{x}{2} [/mm] = [mm] \wurzel{ \bruch{(4,8 - \bruch{y}{2})^2}{3}} [/mm]

Ist das soweit richtig, oder gibt es einen einfacheren Weg?


Bezug
                        
Bezug
Altes Dach Strecken berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Di 16.02.2016
Autor: weduwe

in etwa so für die Unterseite:

[mm] \frac{x}{2}+\frac{y}{2}\sqrt{3}= [/mm] 5.4

und "umgekehrt" für die Höhe

Bezug
                                
Bezug
Altes Dach Strecken berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Mi 17.02.2016
Autor: hase-hh

Ok, d.h. also ich ziehe aus I. und II. die Wurzel


I. $ [mm] \bruch{\wurzel{3}}{2}\cdot{}x [/mm] $ = 4,8 - $ [mm] \bruch{y}{2} [/mm] $

II. $ [mm] \bruch{\wurzel{3}}{2}\cdot{}y [/mm] $ = 5,4 - $ [mm] \bruch{x}{2} [/mm] $

II. [mm] \wurzel{3}*y [/mm] = 10,8 - x

I. x = [mm] \bruch{9,6}{\wurzel{3}} [/mm] - [mm] \bruch{1}{\wurzel{3}}*y [/mm]

einsetzen in II.

[mm] \wurzel{3}*y [/mm] = 10,8 - [mm] (\bruch{9,6}{\wurzel{3}} [/mm] - [mm] \bruch{1}{\wurzel{3}}*y) [/mm]

=>    y = 4,6   und   x = 2,9.









Bezug
                                        
Bezug
Altes Dach Strecken berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Mi 17.02.2016
Autor: fred97


> Ok, d.h. also ich ziehe aus I. und II. die Wurzel
>  
>
> I. [mm]\bruch{\wurzel{3}}{2}\cdot{}x[/mm] = 4,8 - [mm]\bruch{y}{2}[/mm]
>  
> II. [mm]\bruch{\wurzel{3}}{2}\cdot{}y[/mm] = 5,4 - [mm]\bruch{x}{2}[/mm]
>  
> II. [mm]\wurzel{3}*y[/mm] = 10,8 - x
>  
> I. x = [mm]\bruch{9,6}{\wurzel{3}}[/mm] - [mm]\bruch{1}{\wurzel{3}}*y[/mm]
>  
> einsetzen in II.
>
> [mm]\wurzel{3}*y[/mm] = 10,8 - [mm](\bruch{9,6}{\wurzel{3}}[/mm] -
> [mm]\bruch{1}{\wurzel{3}}*y)[/mm]
>  
> =>    y = 4,6   und   x = 2,9.

Das ist O.K., bis auf großzügiges Runden.

FRED

>  
>
>
>
>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de