www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Amoroso-Robinson-Relation...
Amoroso-Robinson-Relation... < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Amoroso-Robinson-Relation...: Rückfrage...
Status: (Frage) überfällig Status 
Datum: 17:51 Sa 09.01.2010
Autor: Morpheus87

Aufgabe
Leiten Sie die Amoroso-Robinson-Relation her und zeigen Sie mithilfe dieser Relation, dass die Preiselastizität [mm] \varepsilon [/mm] im Umsatzmaximum immer -1 beträgt. Welche Aussage über den gewinnoptimalen Preis im Monopol liefert sie?

Ich bin BWL-Student, hoffe aber, dass mir trotzdem geholfen werden kann, da es mir eher um mathematisches Verständnis geht...

Für die Preiselastizität [mm] \varepsilon [/mm] gilt: [mm] \varepsilon [/mm] = [mm] \bruch{dx}{dp}\*\bruch{p}{x} [/mm]

Dabei ist x die Menge und p der Preis.

Für den Umsatz gilt: U(x) = [mm] p(x)\*x [/mm]

Dann ist [mm] \bruch{dU}{dx} [/mm] = [mm] \bruch{dp}{dx}\*x+p(x) [/mm] = [mm] p(x)\*(\bruch{dp}{dx}\*\bruch{x}{p}+1) [/mm] = [mm] p(x)\*(\bruch{1}{\varepsilon}+1) [/mm] (Amoroso-Robinson-Relation)

Diese Gleichung nimmt den Wert 0 an, gdw [mm] \varepsilon [/mm] = -1 ist. Im Umsatzmaximum ist die Preiselastizität also immer -1.

Ist das alles so richtig?

Nun zu meiner eigentlichen Frage. Schließlich ist ja noch gefragt, welche Aussage diese Relation über den gewinnoptimalen Preis im Monopol liefert. Hier habe ich folgenden Ansatz gemacht:

G(x) = U(x)-K(x)

[mm] \bruch{dG}{dx} [/mm] = [mm] p(x)\*(\bruch{1}{\varepsilon}+1)-\bruch{dK}{dx} [/mm]

[mm] p(x)\*(\bruch{1}{\varepsilon}+1)-\bruch{dK}{dx} [/mm] = 0 [mm] \gdw p^{opt} [/mm] = [mm] \bruch{dK}{dx}\*\bruch{1}{\bruch{1}{\varepsilon}+1} [/mm] = [mm] \bruch{dK}{dx}\*\bruch{\varepsilon}{\varepsilon+1} [/mm]

Nun weiß ich nicht so recht, wie ich diesen Ausdruck interpretieren soll. Ich bitte um Hilfe. Ich weiß, dass die Preiselastizität im Gewinnmaximum <-1 ist. Würde aber gerne wissen, wieso das so ist. Ich wüsste allerdings nicht, wie ich das mathematisch beweisen könnte. Auch da würde ich mich über Hilfe freuen. Vielen Dank!...




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Amoroso-Robinson-Relation...: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 11.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de