www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Amplitude
Amplitude < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Amplitude: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:05 Mi 14.07.2010
Autor: Trapt_ka

Aufgabe
hi
habe folgende aufgabe und findfe net wirklich zum ziel
Ein Federpendel der Masse m=30 g und der Kreisfrequenz ω=2s -1 befindet sich zum Zeitpunkt t=0 in
y=3 cm Entfernung von der Ruhelage; seine Geschwindigkeit beträgt v=6 cm/s.
a) Wie groß sind Amplitude, Maximalgeschwindigkeit, Maximalbeschleunigung und
Nullphasenwinkel?
b) Welche Gesamtenergie hat das System?
finde keinen ansatz  

hey irgend wie machen mir die schwingugne zu schaffen
komm damit gar nicht zu recht
weil egal was ich einsetzt
[mm] y(t)=A*sin(\omega*t) [/mm]
[mm] v(t)=A*\omega cos(\omega*t) [/mm]
ich komme auf kein ergebniss

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Amplitude: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mi 14.07.2010
Autor: metalschulze

Hallo,

hier hast du keinen reinen Sinus (bei t=0 ist die Auslenkung nicht null) aber auch keinen reinen Cosinus (dann wäre die Geschwindigkeit gleich 0, er wäre in seinem Umkehrpunkt mit der maximalen Auslenkung).
Du müsstest hier also entweder beides ansetzen: [mm] A*sin(\omega*t) [/mm] + [mm] B*cos(\omega*t) [/mm] oder einen Sinus oder Cosinus mit Phasenverschiebung [mm] C*sin(\omega*t [/mm] + [mm] \phi). [/mm] Dieser Ansatz ist dir in einem der vorhergehenden Posts übrigens schon mal nahegelegt worden...

Gruß Christian

Bezug
                
Bezug
Amplitude: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Mi 14.07.2010
Autor: Trapt_ka

Aufgabe
ja schon  

aber ch komme nicht auf [mm] \phi [/mm]
und ich acht auch ich habs verstanden aber irgend wie doch net
weil wenn ich den ansatz
$ [mm] A\cdot{}sin(\omega\cdot{}t) [/mm] $ + $ [mm] B\cdot{}cos(\omega\cdot{}t) [/mm] $
nehme dann wird doch der vordere term 0

Bezug
                        
Bezug
Amplitude: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Mi 14.07.2010
Autor: Event_Horizon

Hallo!

Ja, das ist korrekt, für t=0 wird der Sinus =0, und der erste Term fällt weg. Der COS wird =1, und damit hast du B bestimmt.
Allerdings ist das nicht die maximale Amplitude.

Du hast aber noch ne Info über die Geschwindigkeit, und dort wird dann der rechte Teil wegfallen, und der linke stehen bleiben, und du kannst A bestimmen.

Denk dran, die Geschwindigkeit ist die Ableitung nach t!

Generell ist diese Methode einfacher zu rechnen, anschaulicher finde ich persönlich die Methode über die FUnktion [mm] $C*\sin(\omega t+\phi)$, [/mm] weil da besser sichtbar drin steckt, daß die Schwingung zur Zeit t=0 irgendwo mittendrin hängt, und nicht in der Nullage oder im Maximum.

Bezug
                                
Bezug
Amplitude: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:02 Mi 14.07.2010
Autor: Trapt_ka

Aufgabe
sorry ich bekomme es net hin

kannst du es mir vieleicht mal aufschreiben?

Bezug
                                        
Bezug
Amplitude: konkreter fragen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Mi 14.07.2010
Autor: Loddar

Hallo Trapt_ka!


Kannst Du Deine Frage / Unklarheit bitte "etwas" konkreter formulieren?


Gruß
Loddar


Bezug
                                                
Bezug
Amplitude: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Mi 14.07.2010
Autor: Trapt_ka

sorry
also es sieht jetzt wie folgt aus

ich kann ja einmal sagen
[mm] y(t=0)=3cm=A\cdot{}sin(\omega\cdot{}t)+B\cdot{}cos(\omega\cdot{}t) [/mm] $
daraus weis ich dann dass B=1cm
wenn ich jetzt hergehen und sage
$ [mm] 6m/s=A\cdot{}\omega\cdot{}cos(0)+B\cdot{}\omega\cdot{}sin(0) [/mm] $
bekomme ich ein A von 3m
und das ist weit von meinem ergebniss das gegeben ist entfernt

Bezug
                                                        
Bezug
Amplitude: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mi 14.07.2010
Autor: Kroni

Hallo,

nun verstehe ich deine Vorgehensweise nicht.

> [mm]y(t=0)=3cm=A\cdot{}sin(\omega\cdot{}t)+B\cdot{}cos(\omega\cdot{}t)[/mm]
> $
> daraus weis ich dann dass B=1cm

Warum denn das? Wenn $y(0) = B = [mm] 3\,\text{cm}$ [/mm] sein soll, dann ist doch [mm] $B=3\,\text{cm}$! [/mm]

Also nochmal in Ruhe:

Du hast also gegeben:

$y(t=0) = [mm] 3\,\text{cm}$ [/mm] und [mm] $\dot{y}(t=0) [/mm] = [mm] v_y(t=0) [/mm] = [mm] 6\,\frac{\text{m}}{\text{s}}$. [/mm]

Dann gilt, wie du schreibst:

$y(t) = [mm] A\sin\omega [/mm] t + [mm] B\cos\omega [/mm] t$:

$y(t=0) = B [mm] \overset{!}{=} 3\,\text{cm}$ [/mm] und

[mm] $\dot{y}(t) [/mm] = A [mm] \omega \cos\omega [/mm] t - B [mm] \omega \sin\omega [/mm] t$

(da hast du ein Vorzeichen falsch).

Dann ist doch

[mm] $\dot{y}(t=0) [/mm] = [mm] A\omega \overset{!}{=} 6\,\frac{\text{m}}{\text{s}}$ [/mm]

also

$A = [mm] \frac{6}{\omega} \,\frac{\text{m}}{\text{s}}$ [/mm]

Also haben wir dann, wenn [mm] $\omega [/mm] = [mm] 2\,s^{-1}$ [/mm] ist:

$y(t) = [mm] \left[3\sin\omega t + 3 \cos\omega t\right] \,\text{cm}$ [/mm]

Soweit okay?

Das kommt dann mit deinen Werten heraus. Welches Ergebnis hast du denn gegeben?

LG

Kroni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de