www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Analysis
Analysis < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: Assoziativgesetz beweisen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:50 Sa 25.03.2006
Autor: LaBouche

Aufgabe
5) Zeigen Sie, dass für die Addition und die Multiplikation in der Menge der komplexen Zahlen das
Assoziativgesetz erfüllt ist, also für beliebige komplexe Zahlen z1, z2 und z3 gilt:

(z1 + z2) + z3 = z1 + (z2 + z3);   (z1 * z2) *z3 = z1 * (z2 * z3)

Das Assoziativgesetz ist doch eigentlich nichts anderes, als Umklammern, oder?


        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Sa 25.03.2006
Autor: DaMenge

Hi,

ja, welche Klammerung du als gleich zeigen musst, steht ja schon da, d.h. du setzt halt an mit drei beliebigen komplexen Zahlen , [mm] $z_1=a+b*i$ [/mm] usw, und rechnest einmal (z1 + z2) + z3 aus und dann  z1 + (z2 + z3) und wirst feststellen ,dass sie gleich sind.

Analog mit der Multiplikation..

viele Grüße
DaMenge

Bezug
                
Bezug
Analysis: Assoziativgesetz
Status: (Frage) beantwortet Status 
Datum: 13:55 So 26.03.2006
Autor: LaBouche


Hallo,
also kann ich das, so, wie im Anhang aufgeführt nicht beseisen?? Dann ist das so komplett falsch, oder?

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Bezug
                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 So 26.03.2006
Autor: chrisno

ja, das ist komplett falsch. Ich fände es netter, wenn ich mir dafür nicht erst die pdf Datei runterladen muss.

Du sollst wohl folgendes machen:
Fang an, wie von DaMenge beschrieben. Dann rechnest Du das innere der Klammer aus. Sortiere nach real und imaginärteil. Nun kannst Die zweite Rechnung durchführen. Dann steht da ein Haufen a1, b1, a2, b2, a3, b3.
Das ganze mit der anderen Seite der Gleichung.

Bewiesen wird, indem auch schon gültige Regeln beim Rechnen mit reellen Zahlen zurückgeführt wird.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de