www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Analysis
Analysis < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: tipp
Status: (Frage) beantwortet Status 
Datum: 18:50 Sa 27.05.2006
Autor: brina_bina

Aufgabe
Zu jedem t<0 ist eine Funktion f von t gegeben durch:
f(x)=tx²-4 / x²
Ihr Schaubild sei Kt.
a) Untersuchen Sie Kt auf Symmetrie, gemeinsame Punkte mit der x-Achse, Extrempunkte und Asyptoten. Zeigen Sie,dass fur alle x ungleich 0 gilt: f(x) <t.
b)Die Gerade x=z schneidet Kt im 1. Feld. Sie schließt mit Kt den beiden koordinatenachsen und der Geraden y=t eine Fläche ein mit dem Inhalt At(z) ein.Berechnen Sie At und deren Grenzwer also lim von z gegen Unendlich At(z).
c) Für welches t berührt eine zur y-Achse symmetrische parabel 2. Ordnung mit Scheitel S(0/-1) die Kurve Kt in deren Schnittpunkt mit der x-Achse? bestimmen Sie die Gleichung der Parabel.
d) Die Tangenten an K1 in den Kurvenpunkten p(u/v) und q(u/v) bilden mir der Geradeny=1 ein dreieck mit den Inhalt A(u).
Bestimmen Sie A(u). Begrunden Sie,dass A(u) keinen extremwert annimmt. Rotiert dieses Dreieck um die y-Achse, so entsteht ein kegel mit dem rauminhalt V. Zeigen Sie, dass v von u abhängig ist.  

hallo, ich habe die erste Aufgabe fertig , außer  mir fehlen die Asymtoten und ,dass ich zeigen soll das fur alle x ungleich 0 gilt ft(x) <t .
und es wäre nett wenn ich ein paar ansatzpunkte bekommen würde für die aufgaben b,c und d. danke.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Analysis: die ersten
Status: (Antwort) fertig Status 
Datum: 23:53 Sa 27.05.2006
Autor: Bastiane

Hallo!

> Zu jedem t<0 ist eine Funktion f von t gegeben durch:
> f(x)=tx²-4 / x²
> Ihr Schaubild sei Kt.
> a) Untersuchen Sie Kt auf Symmetrie, gemeinsame Punkte mit
> der x-Achse, Extrempunkte und Asyptoten. Zeigen Sie,dass
> fur alle x ungleich 0 gilt: f(x) <t.

Für die Asymptoten musst du doch den Grenzwert berechnen. Kürze dafür die ganze Funktion doch einfach mal mit [mm] x^2: [/mm]

[mm] f(x)=\bruch{tx^2-4}{x^2}=\bruch{t-\bruch{4}{x^2}}{1} [/mm]

Und was gilt nun für [mm] \lim_{x\to\infty}f(x) [/mm] und [mm] \lim_{x\to -\infty}f(x) [/mm] ?

Für das zweite muss doch gelten: t-f(x)>0. Setze das doch einfach mal ein, erweitere t auf einen Bruch mit Nenner, so dass du die Differenz berechnen kannst, und was übrig bleibt ist automatisch >0 und somit bist du fertig.

> b)Die Gerade x=z schneidet Kt im 1. Feld. Sie schließt mit
> Kt den beiden koordinatenachsen und der Geraden y=t eine
> Fläche ein mit dem Inhalt At(z) ein.Berechnen Sie At und
> deren Grenzwer also lim von z gegen Unendlich At(z).

Hier musst du mit dem Integral rechnen. Dafür benötigst du die Integralgrenzen, das sind die Schnittpunkte der einzelnen Funktionen.

> c) Für welches t berührt eine zur y-Achse symmetrische
> parabel 2. Ordnung mit Scheitel S(0/-1) die Kurve Kt in
> deren Schnittpunkt mit der x-Achse? bestimmen Sie die
> Gleichung der Parabel.

Also eine solche Parabel wäre [mm] f(x)=ax^2+b. [/mm] Scheite (0/-1) hieße ja dann f(0)=-1 und - weiß nicht, ob du das noch brauchst - f'(0)=0 und f''(0)<0. Damit kannst du die Parabel evtl. sogar schon exakt bestimmen, weiß gerade nur nicht, ob das wirklich nötig ist. Dann musst du noch den Schnittpunkt mit der x-Achse der Funktion berechnen (der wird wohl von t abhängen), und dann berechnest du den Punkt der Parabel an diesem Schnittpunkt. Und da wird sich dann wohl eine Gleichung für t ergeben, die du dann noch nach t auflösen musst.

Zu der letzten habe ich jetzt keine Lust mehr - sorry. Aber sooo viele Fragen auf einmal. ;-)

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Analysis: die letzte
Status: (Antwort) fertig Status 
Datum: 11:29 So 28.05.2006
Autor: leduart

Hallo bina

> d) Die Tangenten an K1 in den Kurvenpunkten p(u/v) und
> q(u/v) bilden mir der Geradeny=1 ein dreieck mit den Inhalt
> A(u).
> Bestimmen Sie A(u). Begrunden Sie,dass A(u) keinen
> extremwert annimmt. Rotiert dieses Dreieck um die y-Achse,
> so entsteht ein kegel mit dem rauminhalt V. Zeigen Sie,
> dass v von u abhängig ist.

Hier ist ne Angabe falsch, denn p und q sind ja derselbe Punkt.
Ich schlag vor, du machst dir erst mal ne Zeichnung dazu und fängst an zu überlegen, und sagst dann, wo deine Schwierigkeit liegt.! Wenn wir dir einfach die Lösungen liefern lernst du ja nix!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de