www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Analysis
Analysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Di 07.11.2006
Autor: studiinnot

Aufgabe
(4) Zeigen Sie für [mm] \Rightarrow [/mm] x, y € [mm] \IR [/mm] :
(a) |x + y| = |x| + |y| xy [mm] \ge [/mm]  0
(b) |x + y| [mm] \le [/mm] 2 max{|x|, |y|}
(c) |x + y|  [mm] \le [/mm] max{|x|, |y|} [mm] \Rightarrow [/mm] xy [mm] \le [/mm] 0.

Ja, ich kriege keine richtigen Ansatz hin !!! Die anderen Aufgaben waren leichter bzw. habe ich raus, aber da :(

Bitte helft mir !!!

Ich habe diese Frage in keinem anderen Forum gestellt !

        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Di 07.11.2006
Autor: leduart

Hallo studi ( in Not sind fast alle!)
> (4) Zeigen Sie für [mm]\Rightarrow[/mm] x, y € [mm]\IR[/mm] :
>  (a) |x + y| = |x| + |y| xy [mm]\ge[/mm]  0

[mm] x*y\ge [/mm] heisst doch [mm] x\ge [/mm] 0 und [mm] y\ge [/mm] 0 oder [mm] x\le [/mm] 0 und [mm] y\le [/mm] 0
mach die Fallunterscheidung und du bist fertig indem du benutzt [mm] x\ge0 [/mm] folgt x=|x| und [mm] x\le0 [/mm] -x=|x|
ebenso in c)

>  (b) |x + y| [mm]\le[/mm] 2 max{|x|, |y|}

verwende 1 für [mm] xy\ge0 [/mm] und der Rest mit Dreiecksungl.

>  (c) |x + y|  [mm]\le[/mm] max{|x|, |y|} [mm]\Rightarrow[/mm] xy [mm]\le[/mm] 0.
>  Ja, ich kriege keine richtigen Ansatz hin !!! Die anderen
> Aufgaben waren leichter bzw. habe ich raus, aber da :(
>  
> Bitte helft mir !!!

Ich hoff da hab ich hiermit
Gruss leduart

Bezug
                
Bezug
Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:47 Mi 08.11.2006
Autor: studiinnot

Aufgabe
  (b) |x + y|  [mm] \le [/mm] 2 max{|x|, |y|}  

a und c ist jetzt klar !! b verstehe ich noch nicht :(

Aber danke erstmal, wenn du nochmal mit b) einen Versuch bei mir startest wäre klasse !!!

Bezug
                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mi 08.11.2006
Autor: leduart

Hallo
Welche Überlegungen hast du bisher gemacht?
überleg einfach was max(|x|,|y|) bedeutet! wenn |x|=|y| und was sonst.
Und dann versuchs mal. Dreiecksungleichung ist immer schön.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de