www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Analysis
Analysis < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: Anwendungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 15:21 Di 23.08.2005
Autor: newton-man

Hallöchen!
Ich hab hier leider ein Problem mit einer Anwendungsaufgabe:
Von einer Garage aus soll eine Auffahrt zur Straße angelegt werden. Der Höhenunterschied beträgt 1m. Zwischen A und B ist eine waagerechte Stellfläche geplant. Die Auffahrt soll in B waagerecht beginnen und in D waagerecht in die Straße einmünden.
(Strecke B-C=5m ; auf der Zeichnung schlecht zu erkennen)

a) Beschreiben Sie die Auffahrt durch eine ganzrationale Funktion niedrigsten Grades.
b) Zwischen B und C beginnt 1m vor C eine 70 cm hohe Felsplatte. Wird sie überdeckt?

[Dateianhang nicht öffentlich]

Ich hoffe Ihr könnt mir helfen.

Vielen Dank und Gruß
newton-man


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Analysis: anderes Bild?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Di 23.08.2005
Autor: djmatey

Hallo,
leider kann man in der Zeichnung die Werte und Buchstaben sehr schlecht erkennen. Evtl. kannst Du sie rot färben und die Zeichnung dann nochmal einstellen!?
Dank & Gruß,
djmatey

Bezug
                
Bezug
Analysis: neues Bild
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 Di 23.08.2005
Autor: newton-man

Hatte leider grad keinen roten Stift da, aber so müsste man es auch lesen können. (Für die Schrift haftet der Stift ;-))

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
        
Bezug
Analysis: Ansätze
Status: (Antwort) fertig Status 
Datum: 19:32 Di 23.08.2005
Autor: Loddar

Hallo newton-man,

[willkommenmr] !!


Welchen Grades muss denn die gesuchte Funktion mindestens sein?

Da wir zwei Stellen vorgegeben haben, an denen horizontale Tangenten vorliegen sollen, muss die 1. Ableitung $f'(x)_$ also auch mindestens zwei Nullstellen haben.

Das heißt also, die 1. Ableitung ist eine quadratische Funktion. Daraus folgt, dass unsere gesuchte Funktion eine kubische Funktion sein muss:

$f(x) \ = \ [mm] a*x^3 [/mm] + [mm] b*x^2 [/mm] + c*x + d$


Wenn wir nun den Koordinatenursprung in unseren Punkt $B_$ legen, erhalten wir folgende Bedingungen:

$f(0) \ = \ 0$

$f'(0) \ = \ 0$

$f(5) \ = \ 1$

$f'(5) \ = \ 0$


Schaffst Du den Rest jetzt alleine?

Für b.) musst Du dann mit der ermittelten Funktionsgleichung überprüfen, ob gilt $f(4) \ [mm] \ge [/mm] \ 0,7 \ = \ [mm] \bruch{7}{10}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Di 23.08.2005
Autor: newton-man

Vielen Dank!
Ich habe b jetzt schonmal verstanden, aber bei a habe ich noch so meine Probleme.
Wie muss ich mit den Bedingungen umgehen, um die Funktion zu errechnen?

Gruß
newton-man

Bezug
                        
Bezug
Analysis: Werte einsetzen ...
Status: (Antwort) fertig Status 
Datum: 20:18 Di 23.08.2005
Autor: Loddar

Hallo newton-man!


Setze doch mal die x- und y-Werte aus den genannten Bedingungen (diese sind Dir aber klar?) in die allgemeine Funktionsvorschrift ein.

Zum Beispiel die erste Bedingung [mm] $\blue{f(0)} [/mm] \ = \ [mm] \blue{0}$: [/mm]

[mm] $\blue{f(0)} [/mm] \ = \ [mm] a*0^3 [/mm] + [mm] b*0^2 [/mm] + c*0 + d \ = \ d \ = \ [mm] \blue{0}$ [/mm]


So erhältst Du ein (lineares) Gleichungssystem mit vier Gleichungen und vier Unbekannten, das es dann zu lösen gilt.


Nun [lichtaufgegangen] ??

Gruß
Loddar


Bezug
                                
Bezug
Analysis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:54 Di 23.08.2005
Autor: newton-man

*freu*
Ich glaub jetzt hab ichs endlich!
Vielen Dank für die Hilfe.

Meine Lösung ist: f(x)=-0,016x³+0,12x²

Bezug
                                        
Bezug
Analysis: Richtig!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Di 23.08.2005
Autor: Loddar

Hallo newton-man!


> Meine Lösung ist: f(x)=-0,016x³+0,12x²

[daumenhoch]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de