www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Analysis Aufgaben Korrektur 2
Analysis Aufgaben Korrektur 2 < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis Aufgaben Korrektur 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:29 Di 25.10.2016
Autor: sinnlos123

Aufgabe
2) Zeigen Sie, dass für 3 Mengen A,B,C [mm] gilt\\ [/mm]
[mm] $(A\cap B)\setminus C=(A\setminus C)\cap(B\setminus C)$\\ [/mm]
[mm] $A\setminus(A\setminus B)=A\cap [/mm] B$

Zeichnen Sie außerdem ein Venndiagramm



2) [mm] $x\in (A\cap B)\setminus C\\ [/mm]
[mm] \Leftrightarrow x\in (A\cap B)\wedge \neg (x\in C)\\ [/mm]
[mm] \Leftrightarrow (x\in [/mm] A [mm] \wedge x\in B)\wedge \neg (x\in C)\\ [/mm]
[mm] \Leftrightarrow (x\in [/mm] A [mm] \wedge \neg (x\in C))\wedge (x\in [/mm] B [mm] \wedge \neg (x\in C))\\ [/mm]
[mm] \Leftrightarrow x\in (A\setminus C)\wedge x\in (B\setminus C)\\ [/mm]
[mm] \Leftrightarrow x\in (A\setminus C)\cap(B\setminus C)$\\ [/mm]
[mm] q.e.d.\\\\ [/mm]
[mm] $A\setminus (A\setminus B)=A\cap$ [/mm]
[mm] $(\overline{A\cap\overline{B}})=A\cap(\overline{A}\cup\overline{\overline{B}})$\\ [/mm]
[mm] $=A\cap(\overline{A}\cup B)=(A\cap \overline{A})\cup (A\cap B)\\ [/mm]
[mm] =\emptyset\cup (A\cap B)=A\cap [/mm] B$ [mm] \\ [/mm]
Dies benutzt das De Morgansche Gesetz [mm] $\overline{A\stackrel{\cup}\cap B}=\overline{A}\stackrel{\cap}\cup \overline [/mm] {B}$ [mm] \\und [/mm] das Distributivgesetz [mm] $A\stackrel{\cup}\cap (B\stackrel{\cap}\cup C)=(A\stackrel{\cup}\cap B)\stackrel{\cap}\cup (A\stackrel{\cup}\cap C)$\\ [/mm]
[mm] q.e.d.\\ [/mm]

[Dateianhang nicht öffentlich]



Fällt euch was auf, das falsch ist? Auch Tippfehler gerne sagen


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Analysis Aufgaben Korrektur 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Mi 26.10.2016
Autor: sinnlos123

Zu der 2. ist es glaube ich hübscher (zum lernen) die linke Seite auf die Quantoren herunterzubrechen.

[mm] $x\in [/mm] A [mm] \backslash [/mm] ( A [mm] \backslash [/mm] B )$
[mm] $\gdw x\in A\wedge x\notin [/mm] (A [mm] \backslash [/mm] B)$
[mm] $\gdw x\in A\wedge \neg (x\in (A\backslash [/mm] B))$
[mm] $\gdw x\in A\wedge \neg (x\in A\wedge x\notin [/mm] B)$
[mm] $\gdw x\in A\wedge (x\notin A\vee x\in [/mm] B)$
[mm] $\gdw(x\in A\wedge x\notin A)\vee (x\in A\wedge x\in [/mm] B)$
[mm] $\gdw x\in A\wedge x\in [/mm] B$
[mm] $\gdw x\in A\cap [/mm] B$

Erfordert dieser Beweis etwas, das erst noch bewiesen werden müsste? gerade
[mm] $x\in A\wedge (x\notin A\vee x\in [/mm] B)$
[mm] $\gdw(x\in A\wedge x\notin A)\vee (x\in A\wedge x\in [/mm] B)$ müsste ich glaube erst geklärt werden oder?

Bezug
                
Bezug
Analysis Aufgaben Korrektur 2: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Fr 28.10.2016
Autor: tobit09

Hallo sinnlos123!


> Zu der 2. ist es glaube ich hübscher (zum lernen) die
> linke Seite auf die Quantoren herunterzubrechen.

Man bezeichnet [mm] $\wedge$, $\vee$ [/mm] und [mm] $\neg$ [/mm] üblicherweise als Junktoren.
Unter Quantoren versteht man [mm] $\exists$ [/mm] und [mm] $\forall$. [/mm]


> [mm]x\in A \backslash ( A \backslash B )[/mm]
>  [mm]\gdw x\in A\wedge x\notin (A \backslash B)[/mm]
>  
> [mm]\gdw x\in A\wedge \neg (x\in (A\backslash B))[/mm]
>  [mm]\gdw x\in A\wedge \neg (x\in A\wedge x\notin B)[/mm]
>  
> [mm]\gdw x\in A\wedge (x\notin A\vee x\in B)[/mm]
>  [mm]\gdw(x\in A\wedge x\notin A)\vee (x\in A\wedge x\in B)[/mm]
>  
> [mm]\gdw x\in A\wedge x\in B[/mm]
>  [mm]\gdw x\in A\cap B[/mm]

Schön! [ok]


> Erfordert dieser Beweis etwas, das erst noch bewiesen
> werden müsste?

Ich würde sagen, es ist hier eine Geschmacksfrage, wie detailliert man die Begründungen führen will.
Hängt natürlich auch davon ab, was an aussagenlogischen Regeln aus der Vorlesung bekannt ist.

(Übrigens ist es, wenn man irgendetwas näher begründen möchte/muss, meist schneller, gar nicht erst mit Äquivalenzpfeil-Ketten zu arbeiten, sondern beide Inklusionen (Teilmengenbeziehungen) getrennt zu überlegen.)


> gerade
> [mm]x\in A\wedge (x\notin A\vee x\in B)[/mm]
>  [mm]\gdw(x\in A\wedge x\notin A)\vee (x\in A\wedge x\in B)[/mm]
> müsste ich glaube erst geklärt werden oder?

Das folgt aus der Aussagenlogischen Regel [mm] $C\wedge(D\vee E)\iff (C\wedge D)\vee (C\wedge [/mm] E)$ für alle Aussagen C, D und E (bekannt als ein Distributivgesetz der Aussagenlogik).

Beweis dieser Regel:

Gelte zunächst [mm] $C\wedge(D\vee [/mm] E)$. (Zu zeigen ist [mm] $(C\wedge D)\vee (C\wedge [/mm] E)$.)
Dann gelten C und [mm] $D\vee [/mm] E$.
1. Fall: Es gilt D. Dann gilt [mm] $C\wedge [/mm] D$ und damit auch [mm] $(C\wedge D)\vee(C\wedge [/mm] E)$.
2. Fall: Es gilt E. Dann gilt [mm] $C\wedge [/mm] E$ und damit auch [mm] $(C\wedge D)\vee(C\wedge [/mm] E)$.

Gelte nun umgekehrt [mm] $(C\wedge D)\vee (C\wedge [/mm] E)$. (Zu zeigen ist [mm] $C\wedge (D\vee [/mm] E)$.)
1. Fall: [mm] $C\wedge [/mm] D$. Dann gelten C und D. Wegen D insbesondere [mm] $D\vee [/mm] E$. Damit erhalten wir [mm] $C\wedge(D\vee [/mm] E)$.
2. Fall: [mm] $C\wedge [/mm] E$. Dann gelten C und E. Wegen E insbesondere [mm] $D\vee [/mm] E$. Damit erhalten wir [mm] $C\wedge(D\vee [/mm] E)$.


Viele Grüße
Tobias

Bezug
        
Bezug
Analysis Aufgaben Korrektur 2: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Do 27.10.2016
Autor: meili

Hallo,

> 2) Zeigen Sie, dass für 3 Mengen A,B,C [mm]gilt\\[/mm]
>  [mm](A\cap B)\setminus C=(A\setminus C)\cap(B\setminus C)[/mm][mm] \\[/mm]
> [mm]A\setminus(A\setminus B)=A\cap B[/mm]
>  
> Zeichnen Sie außerdem ein Venndiagramm
>  
>
> 2) [mm]$x\in (A\cap B)\setminus C\\[/mm]
>  [mm]\Leftrightarrow x\in (A\cap B)\wedge \neg (x\in C)\\[/mm]
>  
> [mm]\Leftrightarrow (x\in[/mm] A [mm]\wedge x\in B)\wedge \neg (x\in C)\\[/mm]
>  
> [mm]\Leftrightarrow (x\in[/mm] A [mm]\wedge \neg (x\in C))\wedge (x\in[/mm] B
> [mm]\wedge \neg (x\in C))\\[/mm]
>  [mm]\Leftrightarrow x\in (A\setminus C)\wedge x\in (B\setminus C)\\[/mm]
>  
> [mm]\Leftrightarrow x\in (A\setminus C)\cap(B\setminus C)$\\[/mm]
>  
> [mm]q.e.d.\\\\[/mm]

[ok]

>  [mm]A\setminus (A\setminus B)=A\cap[/mm]
>  
> [mm](\overline{A\cap\overline{B}})=A\cap(\overline{A}\cup\overline{\overline{B}})[/mm][mm] \\[/mm]

Für [mm] $A\setminus (A\setminus B)=A\cap(\overline{A\cap\overline{B}})$ [/mm]
fehlt eine Begründung

>  
> [mm]$=A\cap(\overline{A}\cup B)=(A\cap \overline{A})\cup (A\cap B)\\[/mm]
>  
> [mm]=\emptyset\cup (A\cap B)=A\cap[/mm] B$ [mm]\\[/mm]
>  Dies benutzt das De Morgansche Gesetz
> [mm]\overline{A\stackrel{\cup}\cap B}=\overline{A}\stackrel{\cap}\cup \overline {B}[/mm]
> [mm]\\und[/mm] das Distributivgesetz [mm]A\stackrel{\cup}\cap (B\stackrel{\cap}\cup C)=(A\stackrel{\cup}\cap B)\stackrel{\cap}\cup (A\stackrel{\cup}\cap C)[/mm][mm] \\[/mm]
>  
> [mm]q.e.d.\\[/mm]
>  
> [Dateianhang nicht öffentlich]
>  
>

Ein Bild zeigt Spezialfall $A [mm] \cap [/mm] B = [mm] \emptyset$ [/mm]

>
> Fällt euch was auf, das falsch ist? Auch Tippfehler gerne
> sagen
>  

Gruß
meili

Bezug
                
Bezug
Analysis Aufgaben Korrektur 2: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:59 Do 27.10.2016
Autor: sinnlos123

hi, ja du meinst das mit A ohne C und B ohne C (die grünen Kreise)

das war so nicht, gewollt,

gewollt war zu zeigen: es ist egal ob man erst C von beiden mengen wegnimmt, oder ob man C erst von beiden mengen einzeln wegnimmt und dann den durchschnitt macht.

wie soll man das sonst graphisch ohne worte klar machen?

Bezug
                        
Bezug
Analysis Aufgaben Korrektur 2: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Sa 29.10.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de