www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Analysis: Punkte (x,y) in IR²
Analysis: Punkte (x,y) in IR² < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: Punkte (x,y) in IR²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Sa 17.10.2009
Autor: Gratwanderer

Aufgabe
Skizzieren Sie die Punkte [mm] (x,y)\in \IR², [/mm] für die x² + xy + y² = 1 gilt.

Hallo,

ich bin an diese Aufgabe folgendermaßen herangegangen, wobei ich mir nicht sicher bin ob es richtig ist. Vielleicht kann mir jemand Tipps geben.

x² + xy + y² = 1

x² + xy = 1 - y²

x(x+y) = 1-y²

x = 1-y²/x-y

(analog für y )

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Analysis: Punkte (x,y) in IR²: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Sa 17.10.2009
Autor: luis52

Moin Gratwanderer,

[willkommenmr]

Deine Aufgabengleichung ist prinzipiell eine quadratische Gleichung in $y_$.
Loese sie, und schaue dir den Radikand an ...

vg Luis

Bezug
                
Bezug
Analysis: Punkte (x,y) in IR²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Sa 17.10.2009
Autor: Gratwanderer

Hallo Luis,

danke für die schnelle Antwort.

Den Vorschlag habe ich wie folgt umgesetzt, komme aber leider immernoch nicht weiter.

x² = 1-y²-xy

x = [mm] \wurzel{1-y²-xy} [/mm]

Bezug
                        
Bezug
Analysis: Punkte (x,y) in IR²: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Sa 17.10.2009
Autor: schachuzipus

Hallo Gratwanderer,

> Hallo Luis,
>  
> danke für die schnelle Antwort.
>  
> Den Vorschlag habe ich wie folgt umgesetzt, komme aber
> leider immernoch nicht weiter.
>  
> [mm] x^2 [/mm] = [mm] 1-y^2-xy [/mm]
>  
> x = [mm]\wurzel{1-y^2-xy}[/mm]  [notok]


Mache Exponenten mit dem Dach ^

In der obigen Gleichung hast du x nicht isoliert, es steht ja noch auf beiden Seiten!

Außerdem gibt es 2 Lösungen, wenn du aus dem Quadrat die Wurzel ziehst [mm] $\pm\sqrt{...}$ [/mm]

Luis hat dir außerdem den Tipp gegeben, nach [mm] $\red{y}$ [/mm] aufzulösen, Funktionen werden ja meist als $y=y(x)$ dargestellt

Mache vllt. sinnvollerweise eine quadratische Ergänzung:

[mm] $y^2+xy+x^2-1=0$ [/mm]

[mm] $\gdw \left(y+\frac{1}{2}x\right)^2+....=0$ [/mm]

Dann das ganze Gezuppel hinter dem Quadrat rüberschaffen, die Wurzel ziehen (Achte auf meine Bem. oben: es ergeben sich 2 Lösungen!) und schließlich nach $y$ auflösen ...

Wenn du die Darstellung hast, erkennst du sofort, um welche Punktmenge es sich hier handelt!


Gruß

schachuzipus

Bezug
                                
Bezug
Analysis: Punkte (x,y) in IR²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Sa 17.10.2009
Autor: Gratwanderer

ok, habe das soweit auf die Form gebracht:

y = [mm] \pm \wurzel{-\bruch{3}{4}*x^2+1} [/mm] - [mm] \bruch{1}{2}*x [/mm]

bin ich jetzt fertig mit der Aufgabe wenn ich sage, dass alle Punkte folgende Form haben:

( x, [mm] \pm \wurzel{-\bruch{3}{4}*x^2+1} [/mm] - [mm] \bruch{1}{2}*x [/mm] )  ?

Bezug
                                        
Bezug
Analysis: Punkte (x,y) in IR²: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Sa 17.10.2009
Autor: luis52


> bin ich jetzt fertig mit der Aufgabe wenn ich sage, dass
> alle Punkte folgende Form haben:
>  
> ( x, [mm]\pm \wurzel{-\bruch{3}{4}*x^2+1}[/mm] - [mm]\bruch{1}{2}*x[/mm] )  ?

*Mir* wuerde das als Aufgabensteller nicht reichen. Beispielsweise kann ich nicht $x=2_$ setzen...

vg Luis


Bezug
                                                
Bezug
Analysis: Punkte (x,y) in IR²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Sa 17.10.2009
Autor: Gratwanderer

Ok, also müsste ich noch einen Definitionsbereich für x angeben?

Dann wäre

[mm] \{x\in\IR | -\wurzel{\bruch{4}{3}}\ge x \vee x \ge+\wurzel{\bruch{4}{3}}\} [/mm]

Bezug
                                                        
Bezug
Analysis: Punkte (x,y) in IR²: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Sa 17.10.2009
Autor: luis52


> Ok, also müsste ich noch einen Definitionsbereich für x
> angeben?
>  
> Dann wäre
>  
> [mm]\{x\in\IR | -\wurzel{\bruch{4}{3}}\ge x \vee x \ge+\wurzel{\bruch{4}{3}}\}[/mm]
>  

[notok] [mm]2\in\{x\in\IR | -\wurzel{\bruch{4}{3}}\ge x \vee x \ge+\wurzel{\bruch{4}{3}}\}[/mm] ...

Du meinst vermutlich [mm]\left\{x\in\IR | -\wurzel{\bruch{4}{3}}\le x \le+\wurzel{\bruch{4}{3}}\right\}[/mm] .

vg Luis


Bezug
                                                                
Bezug
Analysis: Punkte (x,y) in IR²: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Sa 17.10.2009
Autor: Gratwanderer

genau :-) Vielen Dank für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de