www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Analytische Geometrie
Analytische Geometrie < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Geometrie: Aufgabe 2.2.4
Status: (Frage) beantwortet Status 
Datum: 20:32 Sa 29.11.2008
Autor: Steffie90

Aufgabe
Die Gerade g verläuft durch die Punkte A(2,1,3) und B(1,2,5).
Die Ebene F enthält die Punkte P(3,1,2), Q(5,2,1) und R(-1,-4,1).
Die Ebene [mm] E_{3} [/mm] mit der Gleichung 3x+y+z-4=0 ist eine Ebene der Schar [mm] E_{a} [/mm] mit der Gleichung [mm] [\vec{x}- \vektor{-1 \\ 1\\6}]*\vektor{a \\ a-2\\1}=0. [/mm] a Element R

Aufgabe 2.2.4
Zeigen Sie, dass keine Ebene der Schar [mm] E_{a} [/mm] parallel zur z- Achse verläuft. Zeigen Sie, dass keine Ebene der Schar [mm] E_{a} [/mm] orthogonal zur x-y Ebene verläuft.
Die Ebene G enthält die Schnittgerade s: [mm] \vec{x}= \vektor{0 \\ 0\\ 4}+u \vektor{1\\ -1\\ -2} [/mm]
und ist keine Ebene der Schar [mm] E_{a}. [/mm] Bestimmen Sie eine Gleichung der Ebene G.

Kann mir jemand Ansätze zum Rechnen geben?

        
Bezug
Analytische Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Sa 29.11.2008
Autor: goeba

Hallo,


> Die Gerade g verläuft durch die Punkte A(2,1,3) und
> B(1,2,5).
> Die Ebene F enthält die Punkte P(3,1,2), Q(5,2,1) und
> R(-1,-4,1).
> Die Ebene [mm]E_{3}[/mm] mit der Gleichung 3x+y+z-4=0 ist eine Ebene
> der Schar [mm]E_{a}[/mm] mit der Gleichung [mm][\vec{x}- \vektor{-1 \\ 1\\6}]*\vektor{a \\ a-2\\1}=0.[/mm]
> a Element R
>
> Aufgabe 2.2.4
>  Zeigen Sie, dass keine Ebene der Schar [mm]E_{a}[/mm] parallel zur
> z- Achse verläuft.

Parallel hieße: Der Normalenvektor steht senkrecht zur z-Achse. Weise also rechnerisch (Skalarprodukt) nach, dass das nie der Fall ist.

Zeigen Sie, dass keine Ebene der Schar

> [mm]E_{a}[/mm] orthogonal zur x-y Ebene verläuft.

Überlege Dir, was was mit der vorhergehenden Aufgabe zu tun hat.

>  Die Ebene G enthält die Schnittgerade s: [mm]\vec{x}= \vektor{0 \\ 0\\ 4}+u \vektor{1\\ -1\\ -2}[/mm]
>  
> und ist keine Ebene der Schar [mm]E_{a}.[/mm] Bestimmen Sie eine
> Gleichung der Ebene G.
>  

Du weißst ja schon Stützpunkt und einen Richtungsvektor der Ebene G (nämlich die der Geraden). Jetzt musst Du den zweiten Richtungsvektor so bestimmen, dass keine Ebene der Schar rauskommt. Das ist der Fall, wenn der zweite Richtungsvektor niemals senkrecht zum Normalenvektor der Schar steht (Tipp: Da gibts nicht viel zu rechnen, beachte die vorangehenden Aufgaben).



Viele Grüße,

Andreas

> Kann mir jemand Ansätze zum Rechnen geben?


Bezug
                
Bezug
Analytische Geometrie: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 09:52 So 30.11.2008
Autor: Steffie90

Könnte mir jemand diese Aufgabe vorrechen, wäre euch sehr dankbar... Komme allein nicht darauf...

Gruß Steffie

Bezug
                        
Bezug
Analytische Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 So 30.11.2008
Autor: angela.h.b.


> Könnte mir jemand diese Aufgabe vorrechen, wäre euch sehr
> dankbar... Komme allein nicht darauf...
>  
> Gruß Steffie

Hallo,

Tips hast du ja schon bekommen.

Das Rechnen ist Deine Angelegenheit. Wir helfen gern, wen nes nicht weitergeht oder bei konkreten Fragen.

Ein Lösungsmaschine ist das Forum nicht.

Also: leg' mal los oder sag# konkret (!), woran das scheitert.

Mit "Komme alleine nicht drauf" kann man wenig anfangen.

Gruß v. Angela


Bezug
                                
Bezug
Analytische Geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 So 30.11.2008
Autor: Steffie90

Aufgabe
Die Gerade g verläuft durch die Punkte A(2,1,3) und B(1,2,5).
Die Ebene F enthält die Punkte P(3,1,2), Q(5,2,1) und R(-1,-4,1).
Die Ebene [mm] E_{3} [/mm] mit der Gleichung 3x+y+z-4=0 ist eine Ebene der Schar [mm] E_{a} [/mm] mit der Gleichung [mm] [\vec{x}- \vektor{-1 \\ 1\\6}]*\vektor{a \\ a-2\\1}=0. [/mm] a Element R

Aufgabe 2.2.4
Zeigen Sie, dass keine Ebene der Schar [mm] E_{a} [/mm] parallel zur z- Achse verläuft. Zeigen Sie, dass keine Ebene der Schar [mm] E_{a} [/mm] orthogonal zur x-y Ebene verläuft.
Die Ebene G enthält die Schnittgerade s: [mm] \vec{x}= \vektor{0 \\ 0\\ 4}+u \vektor{1\\ -1\\ -2} [/mm]
und ist keine Ebene der Schar [mm] E_{a}. [/mm] Bestimmen Sie eine Gleichung der Ebene G.

[mm] \vektor{0 \\ 0\\1}*\vektor{a \\ a-2\\1}=0 [/mm]

1=0  [mm] E_{a} [/mm] ist nicht orthogonal zur x-y- Ebene

[mm] \vektor{1 \\ -1\\-2}x\vektor{3 \\ 2\\1}=\vektor{3 \\ 5\\5} [/mm]               3a+5a-10+5  -> a=3 k=5

[mm] \vektor{a \\ a-2\\1}k=\vektor{3 \\ 5\\5} [/mm]           5a-10=5
                                                                           5*3-10=5
                                                                                 5=5

G: [mm] [\vec{x}-\vektor{0 \\ 0\\4}]\vektor{3 \\ 5\\5}=0 [/mm]

Stimmt meine Rechnung?          

Bezug
                                        
Bezug
Analytische Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Mo 01.12.2008
Autor: angela.h.b.


> Die Gerade g verläuft durch die Punkte A(2,1,3) und
> B(1,2,5).
> Die Ebene F enthält die Punkte P(3,1,2), Q(5,2,1) und
> R(-1,-4,1).
> Die Ebene [mm]E_{3}[/mm] mit der Gleichung 3x+y+z-4=0 ist eine Ebene
> der Schar [mm]E_{a}[/mm] mit der Gleichung [mm][\vec{x}- \vektor{-1 \\ 1\\6}]*\vektor{a \\ a-2\\1}=0.[/mm]
> a Element R
>
> Aufgabe 2.2.4
> Zeigen Sie, dass keine Ebene der Schar [mm]E_{a}[/mm] parallel zur
> z- Achse verläuft. Zeigen Sie, dass keine Ebene der Schar
> [mm]E_{a}[/mm] orthogonal zur x-y Ebene verläuft.
> Die Ebene G enthält die Schnittgerade s: [mm]\vec{x}= \vektor{0 \\ 0\\ 4}+u \vektor{1\\ -1\\ -2}[/mm]
> und ist keine Ebene der Schar [mm]E_{a}.[/mm] Bestimmen Sie eine
> Gleichung der Ebene G.

Hallo,

ein Tip, nicht zuletzt auch für Klausuren und fürs Abi:

rechne nicht einfach drauflos, sondern sag kurz, was Du weshalb tust.

Das ist eine Hilfe für einen selbst, aber auch für den, der's korrigieren soll.

>  [mm]\vektor{0 \\ 0\\1}*\vektor{a \\ a-2\\1}=0[/mm]
>  
> 1=0  [mm]E_{a}[/mm] ist nicht orthogonal zur x-y- Ebene

Das ist richtig.


>  
> [mm]\vektor{1 \\ -1\\-2}x\vektor{3 \\ 2\\1}=\vektor{3 \\ 5\\5}[/mm]  

Hier erschließt sich für mich nicht, wo Du den Vektor [mm] \vektor{3 \\ 2\\1} [/mm] hernimmst.

Beim Kreuzprodukt hast Du Dich verrechnet.

Gruß v. Angela

Bezug
                        
Bezug
Analytische Geometrie: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:19 Mo 01.12.2008
Autor: Adamantin

Aufgabe
Die Gerade g verläuft durch die Punkte A(2,1,3) und B(1,2,5).
Die Ebene F enthält die Punkte P(3,1,2), Q(5,2,1) und R(-1,-4,1).
Die Ebene $ [mm] E_{3} [/mm] $ mit der Gleichung 3x+y+z-4=0 ist eine Ebene der Schar $ [mm] E_{a} [/mm] $ mit der Gleichung $ [mm] [\vec{x}- \vektor{-1 \\ 1\\6}]\cdot{}\vektor{a \\ a-2\\1}=0. [/mm] $ a Element R

Aufgabe 2.2.4
Zeigen Sie, dass keine Ebene der Schar $ [mm] E_{a} [/mm] $ parallel zur z- Achse verläuft. Zeigen Sie, dass keine Ebene der Schar $ [mm] E_{a} [/mm] $ orthogonal zur x-y Ebene verläuft.
Die Ebene G enthält die Schnittgerade s: $ [mm] \vec{x}= \vektor{0 \\ 0\\ 4}+u \vektor{1\\ -1\\ -2} [/mm] $
und ist keine Ebene der Schar $ [mm] E_{a}. [/mm] $ Bestimmen Sie eine Gleichung der Ebene G.


Ist ja schnell vorgerechnet:

Wenn keine Ebene der Schar [mm] E_a [/mm] parallel zur z-Achse verlaufen soll, darf der Vektor der z-Achse niemals in der Ebenenschar auftauchen und es darf keinen Vektor geben, der darauf orthogonal steht, verständlich?

$ [mm] \vec{n}=\vektor{ 1 \\ 1\\ 0} [/mm] $ Dieser Vektor wäre ein orthogonaler Vektor zur z-Achse

1=a
1=a-2
0=1

Dies gilt für alle vektoren der x-y-Ebene, die ja alle orthogonal wären, also auch [mm] \vektor{ 1 \\ 0\\ 0} [/mm] oder [mm] \vektor{ 0 \\ 1\\ 0}. [/mm] Du erhälst aufgrund des Normalenvektors mit 1 am Ende immer eine falsche Aussage der Form 0=1.

Damit enthält keine Ebene der Schar [mm] E_a [/mm] die z-Achse bzw ist mit dieser parallel.

x-y-Ebene hast du ja schon selbst gelöst.

Übrigens reicht ein Nachweis von einer der beiden Behauptungen, denn die sind ja äquivalent. Wenn du nachweißt, dass keine Ebene der Schar parallel zur z-Achse ist, ist auch keine orthogonal zur x-y-Ebene und umgekehrt. Mit dem Beweis, dass der n-Vektor niemals orthogonal auf x-y steht, hast du auch bewiesen, dass keine z enthält.

Nun, wenn G nicht Teil von [mm] E_a [/mm] sein soll, können wir doch unser Wissen von oben verwenden. Denn [mm] E_a [/mm] darf nicht parallel zur z-Achse verlaufen, also nutzen wir einfach einen Normalenvektor, der orthogonal zur z-Achse ist!

$ [mm] G:[\vec{x}-\vektor{0 \\ 0 \\ 4}]*\vektor{ 1 \\ 1\\ 0}=\vec{0} [/mm] $

Alternativ hättest du auch zu der Schnittgeraden den Vektor der z-Achse hinzufügen können:

$ [mm] G:\vec{x}= \vektor{0 \\ 0\\ 4}+u \vektor{1\\ -1\\ -2}+s*\vektor{0\\ 0\\ 1} [/mm] $

Kreuzprodukt: $ [mm] \vektor{1\\ -1\\ -2}x\vektor{0\\ 0\\ 1}=\vektor{-1\\ 1\\ 0} [/mm] $

Wie du siehst, der selbe Vektor, wenn es darum geht, dass er in der x-y-Ebene liegt. Damit hast du zwei Möglichkeiten für G

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de