www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Analytische Geometrie
Analytische Geometrie < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Geometrie: Ebene und Geraden
Status: (Frage) beantwortet Status 
Datum: 23:22 Di 25.05.2010
Autor: Toertel

Aufgabe
Gegeben sind die Ebenengleichungen

E: [mm] \vec{x}=\vektor{1 \\ 2 \\ 9} +r\vektor{-3 \\ 0 \\ 8} +s\vektor{4 \\ 5 \\ 2} [/mm]

[mm] [\vec{x}-\vektor{2 \\ 7 \\ 19}]*\vektor{40 \\ -38 \\ 15} [/mm]

E: 40x-38y+15z-99=0

a) Erläutern Sie die unterschiedlichen Darstellungsformen.

b) zeigen Sie, dass alle drei Gleichungen die selbe Ebene darstellen

c) Geben Sie die Gleichung einer zu E parallelen Ebene durch den Punkt P(1|2|3) an!

Wollen die bei a) einfach nur wissen, dass die erste Gleichung die Parameterform der Ebene ist, die zweite die Normalenform und die dritte die Koordinatenform?, oder meint ihr man muss auch mehr dazu erläutern? Bzw. erklären, dass die Ebene bei der Parameterform durch zwei Richtungsvektoren der Ebene definiert ist, die Normalenform durch einen Orthogonalen Vektor auf der Ebene und die Koordinatenform durch die Schnittpunkte mit den Koordinatenachsen ?


Bei b) und c) hänge ich komplett - liegt womöglich auch daran, dass a) bisher noch nicht ausreichend beantwortet ist.

Kann mir jemand bei den jeweiligen Ansätzen helfen ?

Gruß


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Analytische Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Di 25.05.2010
Autor: leduart

Hallo
Ja, ich denk, das musst du sagen, (es fehlt in deinem Text der Aufpunkt) wobei man die Koordinatenform auch einfach das ausgeführte skalarprodukt der Normalenform nennen kann.
in b) musst du dann wirklich zeigen, dass das dieselben Ebenen sind, also von 2 nach 3 einfach das Skalaprodukt ausführen, von 1 nach 2 oder 3 kannst du dir nen Weg aussuchen.
c) ist einfach, wenn du die Parameterform nimmst, einfach nen anderen Punkt und die gleichen Richtungsvektoren.
Gruss leduart

Bezug
                
Bezug
Analytische Geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:58 Di 25.05.2010
Autor: Toertel

Mit Aufpunkt meinst du also den Stützvektor, der für die ersten beiden Ebendarstellungen natürlich auch wichtig ist ?, oder was genau ist der Aufpunkt?

b) und c) kommen bei mir nicht an. Hast du ein Rechenbeispiel, was es mir vielleicht verständlicher macht?




Bezug
                        
Bezug
Analytische Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 00:35 Mi 26.05.2010
Autor: rabilein1

Du musst wissen, wie du von der einen Form (z.B. Parameterform) in die andere kommst.

Beispiel:
4x + 2y + 3z = 12

Daraus ergeben sich die drei Punkte
[mm] P_{1} [/mm] (0/0/4) ,  [mm] P_{2} [/mm] (0/6/0) ,  [mm] P_{3} [/mm] (3/0/0)

Aus diesen Punkten kannst du die Ebene bilden:

E: [mm] \vektor{0 \\ 0\\4} [/mm] + s [mm] \vektor{0 \\ 6\\-4} [/mm] + t [mm] \vektor{3 \\ 0\\-4} [/mm]

[mm] P_{1} [/mm] wurde dabei festgelegt. Die Richtungsvektoren ergeben sich jeweils aus der Differenz.


Rückumwandlung:

Aus E: [mm] \vektor{0 \\ 0\\4} [/mm] + s [mm] \vektor{0 \\ 6\\-4} [/mm] + t [mm] \vektor{3 \\ 0\\-4} [/mm] ist die Form ax + by + cz = d gesucht

Dazu nimmt man drei Punkte, die sich aus s=0, t=0 / s=1, t=0 / s=0, t=1 ergeben:
[mm] P_{1} [/mm] (0/0/4) ,  [mm] P_{2} [/mm] (0/6/0) ,  [mm] P_{3} [/mm] (3/0/0)


Somit erhält man:

3a = d
6b = d
4c = d

Das sind 3 Gleichungen mit 4 Unbekannten. Somit kann eine Unbekannte willkürlich festgelegt werden.

Zum Bespiel: a = 4.  Dann ist d =12 ; b = 2  und  c = 3

Also:  4x + 2y + 3z = 12

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de