www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswert/Picard Interation
Anfangswert/Picard Interation < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswert/Picard Interation: Lösungstipps
Status: (Frage) beantwortet Status 
Datum: 13:38 So 06.11.2011
Autor: Mathegirl

Aufgabe
[mm] y'(t)=y(t)^{\bruch{4}{3}} [/mm]
soll mit den Anfangswerten y(0)=0 und y(0)=1 mittels Picard-Iteration gelöst werden.

Leite eine explizite Lösung her!
Lösen sie beide Anfangswertprobleme mittels getrennter Variablen und überprüfe das Ergebnis.


Okay, also bilde ich jetzt jeweils für [mm] y'=y^{\bruch{4}{3}} [/mm] für y(0)=0 und y(1)=1 z.B. 4 oder 5 terme der Picard Iteration?

Was heißt eine explizite Lösung? das ich wieder für [mm] y_n [/mm] eine Formel ähnlich wie bei a) herleiten soll?

mathegirl

        
Bezug
Anfangswert/Picard Interation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 So 06.11.2011
Autor: MathePower

Hallo Mathegirl,

> [mm]y'(t)=y(t)^{\bruch{4}{3}}[/mm]
>  soll mit den Anfangswerten y(0)=0 und y(0)=1 mittels
> Picard-Iteration gelöst werden.
>
> Leite eine explizite Lösung her!
> Lösen sie beide Anfangswertprobleme mittels getrennter
> Variablen und überprüfe das Ergebnis.
>  
> Okay, also bilde ich jetzt jeweils für [mm]y'=y^{\bruch{4}{3}}[/mm]
> für y(0)=0 und y(1)=1 z.B. 4 oder 5 terme der Picard
> Iteration?
>


Ja. Das kannst Du erst allgemein machen,
d.h. mit variabler Anfangsbedingung  [mm]y\left(0\right)=\eta[/mm].


> Was heißt eine explizite Lösung? das ich wieder für [mm]y_n[/mm]
> eine Formel ähnlich wie bei a) herleiten soll?

>


Nein, die DGL ist mit Hilfe der Trennung der Veränderlichen zu lösen.

  

> mathegirl


Gruss
MathePower

Bezug
                
Bezug
Anfangswert/Picard Interation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 So 06.11.2011
Autor: Mathegirl

achso, also ist damit die allgemeine Lösung gemeint? Den begriff explizite Lösung habe ich bisher noch nicht gehört.

Muss ich das allgemein machen oder kann ich gleich für y(0)=0 und y(0)=1 rechnen?

Der Vorteil wäre wenn ich für y(0)=n rechne, dass ich dann bloß noch einsetzen brauche..oder?

mathegirl

(PS: Danke für deine Geduld mir das alles Schritt für Schritt zu erklären!)

Bezug
                        
Bezug
Anfangswert/Picard Interation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 So 06.11.2011
Autor: MathePower

Hallo Mathegirl,


> achso, also ist damit die allgemeine Lösung gemeint? Den
> begriff explizite Lösung habe ich bisher noch nicht
> gehört.

>


Richtig erkannt.

  

> Muss ich das allgemein machen oder kann ich gleich für
> y(0)=0 und y(0)=1 rechnen?

>


Das kannst Du natürlich auch für die gegebenen Anfangsbedingungen rechnen.

  

> Der Vorteil wäre wenn ich für y(0)=n rechne, dass ich
> dann bloß noch einsetzen brauche..oder?

>


So isses.

  

> mathegirl
>  
> (PS: Danke für deine Geduld mir das alles Schritt für
> Schritt zu erklären!)


Gruss
MathePower

Bezug
                                
Bezug
Anfangswert/Picard Interation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 So 06.11.2011
Autor: Mathegirl

[mm] y'(t)=y(t)^{\bruch{4}{3}} [/mm]
[mm] y_0=0 [/mm]
[mm] y_1=0+\integral_{0}^{x}{y_0(t)^{\bruch{4}{3}} dt}= 0+\integral_{0}^{x}{0^{\bruch{4}{3}} dt}= [/mm] 0+1
[mm] y_2=0+\integral_{0}^{x}{y_1(t)^{\bruch{4}{3}} dt}= 0+\integral_{0}^{x}{1^{\bruch{4}{3}} dt}= [/mm] 0+x
[mm] y_3=0+\integral_{0}^{x}{y_2(t)^{\bruch{4}{3}} dt}= 0+\integral_{0}^{x}{x^{\bruch{4}{3}} dt}= [/mm] 0+ [mm] \bruch{3}{7}x^\bruch{7}{3} [/mm]

Das ist alles gerade sehr komisch...das stimmt so sicher nicht oder?

MfG
mathegirl

Bezug
                                        
Bezug
Anfangswert/Picard Interation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 So 06.11.2011
Autor: MathePower

Hallo Mathegirl,

> [mm]y'(t)=y(t)^{\bruch{4}{3}}[/mm]
>  [mm]y_0=0[/mm]
>  [mm]y_1=0+\integral_{0}^{x}{y_0(t)^{\bruch{4}{3}} dt}= 0+\integral_{0}^{x}{0^{\bruch{4}{3}} dt}=[/mm]
> 0+1


Überlege Dir, was [mm]0^{4/3}[/mm] ist.


>  [mm]y_2=0+\integral_{0}^{x}{y_1(t)^{\bruch{4}{3}} dt}= 0+\integral_{0}^{x}{1^{\bruch{4}{3}} dt}=[/mm]
> 0+x
>  [mm]y_3=0+\integral_{0}^{x}{y_2(t)^{\bruch{4}{3}} dt}= 0+\integral_{0}^{x}{x^{\bruch{4}{3}} dt}=[/mm]
> 0+ [mm]\bruch{3}{7}x^\bruch{7}{3}[/mm]
>  
> Das ist alles gerade sehr komisch...das stimmt so sicher
> nicht oder?
>  
> MfG
>  mathegirl


Gruss
MathePower

Bezug
                                                
Bezug
Anfangswert/Picard Interation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 So 06.11.2011
Autor: Mathegirl

ja, [mm] 0^{\bruch{4}{3}}= [/mm] 0 und eine Stammfunktion von 0 ist z.B. 1

wie muss es denn richtig lauten?

Mathegirl

Bezug
                                                        
Bezug
Anfangswert/Picard Interation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 So 06.11.2011
Autor: MathePower

Hallo Mathegirl,

> ja, [mm]0^{\bruch{4}{3}}=[/mm] 0 und eine Stammfunktion von 0 ist
> z.B. 1
>

y=1 ist keine Lösung, da diese die DGL nicht erfüllt.


> wie muss es denn richtig lauten?

>


Bleibt als einzige Lösung y=0.

  

> Mathegirl


Gruss
MathePower

Bezug
                                                                
Bezug
Anfangswert/Picard Interation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 So 06.11.2011
Autor: Mathegirl

Also brauche ich für y(0)=0 und für y(0)=1 nicht die terme zu berechnen? Aber es heißt doch in der Aufgabe, dass ich diese DGL mittels Picard Iteration lösen soll. Gibt es eine explizite Lösung die ich mit dem Iterationsverfahren bestimmen kann?


Mathegirl

Bezug
                                                                        
Bezug
Anfangswert/Picard Interation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 So 06.11.2011
Autor: MathePower

Hallo Mathegirl,

> Also brauche ich für y(0)=0 und für y(0)=1 nicht die
> terme zu berechnen? Aber es heißt doch in der Aufgabe,
> dass ich diese DGL mittels Picard Iteration lösen soll.
> Gibt es eine explizite Lösung die ich mit dem
> Iterationsverfahren bestimmen kann?
>  


Die Lösungen unter den gegebenen Anfangsbedingungen
sind mit der Picard-Iteration zu bestimmen.

Die Lösung y=0 für die Anfangsbedingung y(0)=0 kommt
auch durch die Anwendung der Picard-Iteration zustande.


>
> Mathegirl



Gruss
MathePower

Bezug
        
Bezug
Anfangswert/Picard Interation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 So 06.11.2011
Autor: Mathegirl

Aufgabe
Können sie eine explizite Lösung herleiten? Löse beide Anfangswertprobleme mittels getrennter Variablen.

okay, da wir das in der VL nie angesprochen haben, bereitet mir das nun ziemliche Probleme (nicht nur mir!!!)

[mm] y'=y^\bruch{4}{3} \ [/mm]
Trennung der Variablen:
[mm] \bruch{dy}{dx}=y^\bruch{4}{3}\Rightarrow \bruch{dy}{y^\bruch{4}{3}}=dx [/mm]


Integration auf beiden Seiten:
[mm] \integral_{}^{}{\bruch{dy}{y}}=\integral_{}^{}{dx}\Rightarrow [/mm]

[mm] -\bruch{3}{\wurzel[3]{y}}=x+C [/mm]

Stimmt das soweit? Aber was mache ich nun mit meinen Anfangswerte y(0)=0  und y(0)=1?

wie sezue ich die ein wenn ich eine die Anfangswertprobleme mittels getrennter Variablen lösen soll?

Mathegirl

Bezug
                
Bezug
Anfangswert/Picard Interation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 So 06.11.2011
Autor: MathePower

Hallo Mathegirl,

> Können sie eine explizite Lösung herleiten? Löse beide
> Anfangswertprobleme mittels getrennter Variablen.
>  okay, da wir das in der VL nie angesprochen haben,
> bereitet mir das nun ziemliche Probleme (nicht nur mir!!!)
>  
> [mm]y'=y^\bruch{4}{3} \[/mm]
>  Trennung der Variablen:
>  [mm]\bruch{dy}{dx}=y^\bruch{4}{3}\Rightarrow \bruch{dy}{y^\bruch{4}{3}}=dx[/mm]
>  
>
> Integration auf beiden Seiten:
>  
> [mm]\integral_{}^{}{\bruch{dy}{y}}=\integral_{}^{}{dx}\Rightarrow[/mm]
>
> [mm]-\bruch{3}{\wurzel[3]{y}}=x+C[/mm]
>  


Ja, das stimmt soweit. [ok]


> Stimmt das soweit? Aber was mache ich nun mit meinen
> Anfangswerte y(0)=0  und y(0)=1?
>


Der Wert 0 für y ist nicht zulässig.

Es muss demnach noch eine andere Lösung für y geben.


> wie sezue ich die ein wenn ich eine die Anfangswertprobleme
> mittels getrennter Variablen lösen soll?
>  


Setze die Anfangsbedingung y(0)=1 in die Gleichung

[mm]-\bruch{3}{\wurzel[3]{y}}=x+C[/mm]

ein. Dann erhältst Du die Konstante C.


> Mathegirl


Gruss
MathePower

Bezug
                        
Bezug
Anfangswert/Picard Interation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 So 06.11.2011
Autor: Mathegirl

als allgemeine Lösung muss es dann umgeformt wie folgt aussehen:
[mm] y=(-\bruch{3}{x+C})^3 [/mm]

und wenn ich y(0)=1 einsetzen, dann erhalte ich für C=3-x


Mathegirl

Bezug
                                
Bezug
Anfangswert/Picard Interation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 So 06.11.2011
Autor: MathePower

Hallo Mathegirl,

> als allgemeine Lösung muss es dann umgeformt wie folgt
> aussehen:
>  [mm]y=(-\bruch{3}{x+C})^3[/mm]
>  
> und wenn ich y(0)=1 einsetzen, dann erhalte ich für C=3-x
>


Für x  mußt Du 0 einsetzen , dann stimmt es aber immer noch nicht.


>
> Mathegirl


Gruss
MathePower

Bezug
                                        
Bezug
Anfangswert/Picard Interation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 So 06.11.2011
Autor: Mathegirl

Was ist an der allgemeinen Lösung denn falsch?

wenn ich für x Null einsetze, dann erhalte ich:

[mm] C=\bruch{3}{\wurzel[3]{y}}[/mm]

Bezug
                                                
Bezug
Anfangswert/Picard Interation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 So 06.11.2011
Autor: MathePower

Hallo Mathegirl,

> Was ist an der allgemeinen Lösung denn falsch?
>  


An der allgemeinen Lösung ist nichts falsch.
Bei der Bestimmung der Konstanten ist Dir ein Fehler unterlaufen.


> wenn ich für x Null einsetze, dann erhalte ich:
>  
> [mm]C=\bruch{3}{\wurzel[3]{y}}[/mm]  


Auch hier: Setze für y=1.

Es ist doch:[mm]y=(-\bruch{3}{x+C})^3[/mm]

Anfangsbedingung y(0)=1 eingesetzt:

[mm]1=(-\bruch{3}{0+C})^3[/mm]

Daraus ergibt sich dann das C.


Gruss
MathePower

Bezug
                                                
Bezug
Anfangswert/Picard Interation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 So 06.11.2011
Autor: leduart

Hallo auch wenn du die Stammfunktion y=c an 0 und x einsetzest hast du c-c=0 !
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de