Anfangswertaufgabe < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:58 Fr 10.08.2012 | Autor: | teo |
Aufgabe | Für [mm] \zeta \in \IR [/mm] sei das Anfangswertproblem [mm] x' = arctan(x), x(0) = \zeta [/mm] gegeben. Beweisen Sie folgende Aussagen:
a) Das AWP besitzt genau eine maximale Lösung [mm] \lambda_{\zeta}:I_{\zeta} \to \IR.
[/mm]
b) [mm] \lambda_{\zeta} [/mm] besitzt genau dann eine Nullstelle, wenn [mm] \zeta [/mm] = 0 ist.
c) Für alle t [mm] \in I_{\zeta} [/mm] gilt: [mm] \zeta [/mm] - [mm] \frac{\pi}{2}|t| \leq \lambda_{\zeta}(t) \leq \zeta [/mm] + [mm] \frac{\pi}{2}|t|.
[/mm]
d) [mm] I_{\zeta} [/mm] = [mm] \IR. [/mm] |
Hallo, also bin so vorgegangen:
a) arctan(x) ist lipschitz stetig, da gilt [mm] arctan'(x) = \frac{1}{1+x^2} [/mm] und für alle [mm] x \in \IR: \frac{1}{1+x^2}\leq 1 [/mm]. Mit dem Mittelwertsatz folgt dann [mm] |arctan(y)-arctan(x)| \leq |y-x| [/mm] wobei L = 1 die Lipschitzkonstante ist.
Nach dem Satz von Picard Lindelöf besitzt dann jedes Anfangswertepaar des AWP eine eindeutige Lösung mit maximalen Existenzintervall.
b) Es gilt [mm] \integral arctan(x) dx = xarctan(x) - \frac{1}{2}ln(x^2+1) + c [/mm]. Wegen [mm] x(0) = \zeta [/mm] folgt: [mm] \lambda_{\zeta}(0) = 0*arctan(0) - \frac{1}{2}ln(0^2+1) + c = c = \zeta [/mm]. Somit ist [mm] \lambda_{\zeta}(t) = t*arctan(t) - \frac{1}{2}ln(t^2+1) + \zeta[/mm] Lösung des AWP. Wegen arctan(t) = 0 nur für t = 0 und [mm] ln(t^2+1)= [/mm] 0 ebenfalls nur für t = 0 folgt, dass [mm] \lambda_{\zeta}(t) [/mm] nur in t=0 eine Nullstelle haben kann. Wegen [mm] \lambda_{\zeta}(0)=\zeta [/mm] folgt, dass [mm] \lambda_{\zeta} [/mm] genau dann eine Nullstelle besitzt, wenn [mm] \zeta [/mm] = 0 gilt.
c) So hier weiß ich nicht so richtig. Denn für alle [mm] t\in \IR [/mm] gilt [mm]-\frac{\pi}{2} \leq arctan(t) \leq \frac{\pi}{2}[/mm] also folgt [mm]-\frac{\pi}{2}|t| \leq t*arctan(t) \leq \frac{\pi}{2}|t| [/mm] und [mm]\zeta -\frac{\pi}{2}|t| \leq t*arctan(t) + \zeta \leq \frac{\pi}{2}|t| + \zeta [/mm]. Leider ist aber ja jetzt bei [mm] \lambda_{\zeta} [/mm] noch [mm] -\frac{1}{2}ln(t^2+1) [/mm] dabei. Was mach ich denn damit?
d) [mm] \lambda_{\zeta}(t) [/mm] ist für alle t [mm] \in \IR [/mm] definiert, da arctan(t) und [mm] ln(t^2+1) [/mm] für alle t [mm] \in \IR [/mm] definiert sind, folglich gilt [mm] I_{\zeta} [/mm] = [mm] \IR. [/mm]
Reicht das?
Vielen Dank fürs drüber schaun!
Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:36 Fr 10.08.2012 | Autor: | leduart |
Hallo
dein [mm] \lambda(t) [/mm] bzw x(t) ist keine Losung der DGl_
du hast einfach die rechte Seite integriert, nach x! aber da steht doch dx/dt=arctan(x(t))
ich denke es gibt keine explizite Lösung der Dgl, die man mit Separation der Variablen lösen müsste, aber [mm] \integral{1/arctan(x) dx} [/mm] ist wohl nur anzunähern .
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:44 Fr 10.08.2012 | Autor: | teo |
Ok, danke! Das stimmt wohl... wie aber kann ich dann die Aufgabenteile b)-d) lösen ohne die Lösung explizit zu kennen?
Danke!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:49 Fr 10.08.2012 | Autor: | leduart |
Hallo
abschätzen, du kennst x Und [mm] \dot [/mm] x am Anfang, vielleicht kann man auch das Inzegral abschätzen?
Gruss leduart
|
|
|
|