www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 So 15.10.2006
Autor: Heidemarie_B

Aufgabe
Ermitteln Sie die Lösung des Anfangswertproblems [mm] xy'+y-e^x=0 [/mm] mit y(a)=b

Halli Hallo,
ich habe mich das ganze Wochenende mit Differentialgleichungen auseinandergesetzt und auch recht gut verstanden und nun kommt diese Aufgabe. Habe hier zunächst den homogenen Teil gelöst und dann die partikuläre Lösung und zum Schluss hatte ich dann als allgemeine Lösung:
[mm] y=K*e^x-2x-2 [/mm]
falls das richtig sein sollte, wie verfahre ich denn dann weiter? Oder ist der Ansatz auch schon völlig falsch?
Vielen Dank schonmal für die Antwort:-)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 So 15.10.2006
Autor: Event_Horizon

Hi!

Also, mir kommt der Ansatz komisch vor...

Zum homogenen Teil:

xy'+y=0


Sieht sehr nach Polynomen aus, aber dafür ist das + falsch.

Mit [mm] \frac{a}{x} [/mm] wird man da glücklicher. Die  Ableitung ist [mm] -\frac{a}{x^2}, [/mm] und dann paßt das.

Für die patikuläre Funktion muß da auch eine e-Funktion drin sein, aber auch da muß irgendwie noch ein 1/x dran.

Also [mm] $\frac{b}{x}*e^x$ [/mm]

Ableitung ist [mm] $-\frac{b}{x^2}*e^x+\frac{b}{x}*e^x$ [/mm]

Einsetzen:

[mm] $-\frac{b}{x}*e^x+b*e^x+\frac{b}{x}*e^x-e^x=0$ [/mm]

[mm] $b*e^x-e^x=0$ [/mm]

b=1

Somit ist die Lösung [mm] $y(x)=\frac{a}{x}+\frac{1}{x}*e^x$ [/mm]



Jetzt sehe ich grade, daß a eine schlechte Wahl für den Parameter war... Sagen wir einfach, das AWP ist y(A)=B

Also, A in die Lösung einsetzen, und das ganze gleich B setzen, dann kannst du den freien Parameter a bestimmen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de